Automated Instructional Development
Using Personal Computers: Research

Issues

Greg Kearsley
Courseware Incorporated

Abstract. This article discusses the
design of systems for automating in-
structional development.” A prototype
automated Instructional Systems Design
(15D} system called the CoursewareR In-
structional ToolkitT is described, The
purpose of this system was to explore
the extent to which ISD could be
automated and the research issues
associated with such automation. The
major research issues identified were: {a)
what aspects of ISD can be automated,
(b} transfer of information between 1SD
tasks, (c) effects on ISD processes and
outcomes and (d) implications of auto-
mated systems for the skills of instruc-
tional developers.

Introduction

Instructicnal development is a very
labor-intensive process. Because of this,
it is very expensive, susceptible to in-
dividual differences in skill levels, and
not especially reliable. Despite the
emergence and widespread use of In-
struction Systems Design (ISD) pro-
cedures (Logan, 1981; (FNeil, 1979), in-
structional development is still not a
highly refined activity. There is a
recognized need to improve the quality
of 1SD) methods (Montague, Wulfeck, &
Ellis, 1983). .

One potential solution to the problem
is to automate instructional develop-
ment procedures. Over the past decade,
a number of research projects have ex-
amined this possibility. Braby and Kin-
caid (1981} developed a computer-based
editing system that helped authors create
Navy technical manuals. Brecke and
Blaiwes (1981) described the CASDAT
system that was intended to automate
instructional analysis and design ac-
tivities for technical training, Kincaid,
Braby & Wulfeck {1983) discuss com-
puter aids for testing, (O'Neal and

1986, VOL, 9, NO. 1

O'Neal (1979) describe the Author
Management System developed to auto-
mate project management in large-scale
ISD projects. Merrill and Wood (1984}
describe their Lesson Design System im-
plemented on an Apple II microcom-
puter.

There are a number of different facets
to automation and instruction (Kearsley
& Seidel, 1985). A great deal of attention

"has been given to automating one par-

ticular aspect of instructional develop-
ment, namely, the creation of computer-
based instruction programs using
authoring systems. Authoring systems
allow computer-based programs to be
developed without the need to know a
computer programming language, and
reduce the development time required
{Kearsley 1982; 1984). There are literally
hundreds of authoring systems available
for personal computers, each one with
different features and capabilities. Many
instructional developers now use these
systems to create computer-based in-
struction. However, authoring systems
represent only the tip of the iceberg,
even in the development of computer-
based instruction. More time is required
for the analysis, design, and evaluation
of instruction than the actual creation of
programs, To make more significant
gains in reducing the time (and expense)
associated with instructional develop-
ment, it is necessary to automate these
other tasks. While many existing author-
ing systems could serve as a goed basis
for more comprehensive automated
development systems, at present they
are limited to producing programs.
Another important aspect to
automating instruction is the production
of print and multimedia materials. Per-
sonal computers are now commonly us-
ed to create, edit and typeset textbooks
and manuals as well as to generate
graphics, slides, overhead transparen-
cies, and animated sequences. As in-
structional developers become increas-
ingly accustomed to using computers for
media production tasks, it will become

natural to use the same systems for
analysis, design, and evaluation tasks.
To summarize, the instructional
development fie}d is being driven
towards the use of computers for all
phases of ISD by a number of factors in-
cluding the desire for better quality
results, the need for increased efficiency,
and for convenience, Like other domains
prior to the use of technology, there is
little understanding in the ISD field of
what kind of impact automation could
have. The purpose of this article is to
identify research issues in the develop-
ment of automated ISD systems based
on a prototype system called the
CoursewareR Instructional ToolkitTM,

Architecture of the System

For the purpose of discussing the
research issues involved in automating
ISD, it is not necessary to extensively
describe the Toolkit prototype. The pro-
totype served primarily as a vehicle to
identify and study the issues. It also
served as a means to investigate the
feasibility and resources required to
develop a full scale system, On the other
hand, the particular nature of the system
undoubtedly influenced the kinds of
issues raised. For this reason, the basic
structure and characteristics of the
system will be briefly described.

It should be emphasized that the
Toolkit is intended for use in large scale
ISD projects that invelve a team of
developers working together to produce
a substantial amount of curriculum
material (i.e., hundreds of lessons)
under time pressure. In this environ-
ment, standardization and communica-
tion of results from one task to another
is very important. While the Toolkit
could be used by a solitary developer for
a single course, most of the functions
would probably not be worthwhile since
the tasks could be completed faster and
more easily by manual methods.

The Toolkit was implemented on an
IBM PC/XT and consisted of four dif-
ferent types of software (see Figure 1),

9



The system manager integrated all of the
other programs in the Toolkit and
allowed them to exchange data. It also
allowed us to store keystroke or com-
mand sequences (needed for macro
capabilities—described below) and pro-
vided “windowing” capabilities across
all programs. We used DESQ from
Quarterdeck Office Systems, although
there are a number of other similar pro-
grams now available for the IBM-PC.
Applications software includes com-
mercially available programs for word

processing, database management,
spreadsheets, project management,
statistical analysis, telecommunications,
etc. Authoring software includes any
commerically available authoring
language or system, as well as programs
for graphics creation, typesetting, and
slide production. Custom designed soft-
ware refers to programs that had to be
written in a programming language to
accomodate unique requirements that
could not be met by the commercially
available applications or authoring pro-

System Manager
Software

grams, Figure 2 shows the specific ISD
functions that we explored in the pro-
totype. Functions with an asterisk were
actually implemented; those without
were designed only on paper, These par-
ticular functions were selected for one of
three reasons: (a) they represent com-
monly performed ISD tasks, (b} they
represent ISD tasks typically performed
poorly, or {c) they represent ISD tasks
that are seldom performed (but should
be).

¢ Menus/Helps
* Windowing

® Data Transfers

Applications
Software

Authoring
Software

Custom Designed

Software

Figure 1. Instructional Toolkit System Architecture

ANALYSE

Problem Analysis®
Job/Task Analysis*
Task Validation*
Objective Hierarchies

DESIGN

Lesson Specifications*
Media Selection*
Syllabus Developmant*
Prototyping

DEVEHLOPMENT

SBtoryboarding”
Authoering

Test Construction®
Utilities

MPLENENTATION

Project Management*

F (ol d Elpstructu[;‘ Training*
igure 2. t nted i vaining Requirements
gure 2. ISD Functions Impleme in Liaining Requie

Toolkit

EVALUATION

Course Evaluations™
Cost/Benefits*
Builet-proofing

10 JOURNAL OF INSTRUCTIONAL DEVELOPMENT




Associated with each ISD function is a
standard set of components: overviews,
macres, shells, examples, job aids, and
helps. The overview explains the nature
and rationale of the ISD task and relates
it to other ISD tasks. Although the over-
views in the prototype were for
reference only, they could be elaborated
into full interactive tutorials that teach
the ISD task to new develepers. Macros
represent the automated procedures and
consist of stored command sequences
appropriate for the applications or
authoring program being used for that
ISD function.

Shelis represent an empty template or
outline that can be completed {on-line or
off-line) to accomplish the particular
ISD task involved. For example, the
shell for the problem analysis function,
is the outline of a problem analysis
document to be filled in using a word
processing program. The sheil for the
task hierarchy function is a blank set of
boxes to be filled in using a graphics pro-
gram. The shell for a cost/benefits func-
tion is an empty spreadsheet template.

Examples are shells that have been
completed for specific instructional pro-
jects. They serve as models or illustra-
tions of what the task looks like when
completed. Job aids are descriptions of
the steps or procedures to be followed to
compiéte an ISD task. In some cases, the
job aid is simply a shell with a listing of
the guestions to be answered to com-
plete the task. Helps explain how to use
the current function, This could be an
explanation of what the macros do or a
specific step in the current task.

Examples of Use

A few examples will help elarify how
a developer uses the system. Figure 3
shows a schematic of how lesson
specifications are written. The lesson
specification function in the Toolkit pro-
totype used a word processing program
as its basis. After selecting the lesson
specification function, the developer can
choose to see an overview, example,
shell or job aid. There are three ways the
designer could complete the task: (a)
select a shell and fill in the appropriate

Overview

'

Examples

Job Aid

Complete
Specifications
" (On-Line)

Print
Specilications

Figure 3. Steps in Lesson Specification

1986, VOL, 9, NO. 1

information under the headings provid-
ed, (b} select an example and use this as
a model to complete the shell, or (c)
select the job aid and answer the ques-
tions to fill in the shell. Because each
component can have its own window, it
is possible to keep the example or job aid
on one part of the screen while filling in
the sheli.

Once the specification has been com-
pleted, it can be printed out for review.
If the developer is working with others
on a network, the specification could be
viewed on the screen. Since communica-
tions can be brought up in its own win-
dow at the same time a specification is
being reviewed, it would be possible for
two developers to*have an on-line con-
versation about the specification.
Because we did not have a net-worked
system, we were unable to explore this
interesting possibility.

Many of the analysis, development,
and evaluation functions use word pro-
cessing programs and work in a fashion
similiar to the specification function
{e.g.. problem analysis, job/task
analysis, instructor training, test con-
struction}. Other functions, such as task
validation, syllabus development, media
selection, course evaluations, and stud-
ent records use database management
programs.

Figure 4 shows the sequence of steps in
a syllabus development task. To con-
struct a syllabus, the developer begins
by transferring objectives to the
database shell from an objectives hierar-
chy or task listing already created, The
shell has columns corresponding to the
critical parameters that will be used to
organize the objectives into units or
lessons (e.g., prerequisites, type of
learning, duration). The developer must
specify the parameters and a rule for
combining objectives based upon the
parameters (e.g., hands-on objectives at
end of unit, maximum of 20 minutes per
unit).

Once these parameters have been in-
dicated for each objective, the program
sorts the objectives into units based
upon the rule provided. The result is
then displayed to the developer who can
change the rule or parameters and rerun
the program. When the designer is
satisfied with the syllabus, it can be
printed out.

All of the operations (specifying
parameters and rules, sorting, and prin-
ting} are handled by macros. The
syllabus development function also in-
cludes the other standard Toolkit com-

11



ponents (overview, examples, job aid,
and helps). Using this function, a large
syllabus encompassing thousands of ob-
jectives and hundreds of units can be
created in a matter of hours compared to
days by manual methods. Furthermore,
the process is repeatable—given the
same parameter values and rules, the
program produces the same syllabus
each time, s

The development of questionnaires
for course evaluations is another func-
tion that uses a database management
program. To compose a questionnaire,
the developer simply selects the items to
be included. The items can be open-
ended questions as well as multiple
choice or ratings. New items can be add-
ed by bringing up a word processing
program in another window. After the
questionnaires are completed and the

responses entered, a statistical analysis’

program could be used to analyze the
results and keep these in the course
evaluation database.

12

Move Objeclives
to Worksheel

Identify Critical
Parameters for
Each Objective

Clustering of
Objectives

Clean-up

Y

Print Out
Syllabus

Figure 4. Steps in Syllabus Development

Project costing (a project management

‘task) is an example of a function that

uses a spreadsheet program. Other func-
tions that use spreadsheet programs as
their basis are training requirements
estimation and cost/benefits analysis,
The shell for this program is a template
that requires the developer to fill in
values for the estimated number of ob-
jectives or course duration, type of
media involved, complexity of content,
distance between customer and project
staff, and other critical project costing
parameters. Once these values have
been filled in, the program uses a matrix
of historical data to compute the
estimated number of person-days re-
quired for different job categories and
costs based upon salary and overhead
rates. -

The developer can mmodel different
assumptions about course size, media,
and project staffing to produce a range
of cost estimates. Using this function,
project costing can take a few minutes to

complete instead of hours using a
calculator. More importantly, because
the function uses cumulative historical
data, the estimates are likely to be more
accurate than ones made on the basis of .
a single individual’s experience,
Cost/benefits analysis is another ex-

ample of a function that uses a spread-
sheet program. The developer first com-
pletes the system and development costs
and then estimates the utilization of the
program. The program then calculates
the cost per student hour. If any of the
entries are changed, the calculation is
immediately redone. This allows the
developer to explore different assump-
tions about costs or utilization.

Issues

Putting aside the obvious practical
benefits alluded to in the previous sec-
tion (i.e., standardization, time savings,
increased reliability, more accuracy),
the Toolkit prototype raises some in-
teresting research questions about

JOURNAL OF INSTRUCTIONAL DEVELOPMENT

- - T —— -y



Training Requirements
Course Evaluations

Syllabus Development
Cost/Benefits

Lesson Specifications
Prototyping

Objective Hierarchies
Media Selection

Job/Task Analysis
Task Validation
Storyboarding

Test Construction
Project Management
Instructor Training
Bullet-proofing

Problem Analysis
Authoring

Problem Analysis
Job/Task Analysis
Task Validation
Objective Hierarchies
Lesson Specifications
Media Selection
Syllabus Development

Prototyping
Storyboarding
Authoring

Test Construction
Project Management
Instructor Training
Training Requirements
Course Evaluations

Cost/Benefits
Bullet-proofing

.

Figure 5. Predicted Relationships Between ISD Tasks

automated instructional development.
They are as follows:

1. What aspects of ISD can/cannot be
automated?

This is a classic issue in the field of
human factors engineering that deals
routinely with performance limitations
in human-machine systems. It is also an
important question in the field of ar-
tificial intelligence, which deals with the
design of computer programs capable of
“intelligent” actions. Both of these
perspectives are relevant to the issue of
what aspects of ISD can/cannot be
automated.

Most ISD tasks can be broken down
into a relatively simple clerical compo-
nent and a more complex judgemental
component. For example, in lesson
specification, certain questions must be
asked and the answers obtained (e.g.,
“What is content for this objective?”;
"How could you illustrate this concept
visually?”, etc.). This is a simple clerical
task. The answers must then be
translated into a specification for a
definition, example, test question,
review, and so on. This step requires
judgement. In syllabus development, the

1986, VOL. 9, NO. 1

. B sl

judgement comes in identifying the
parameters of each objective and the
grouping rules; the sorting into units is
clerical in nature. In project costing, the
judgements are made in estimating the
size and complexity of the project; the
generation of the actual cost estimates is
mere calculation.

The clerical components of a task are
relatively easy to automate. They con-
sist of procedures with a fixed set of
steps, formulas, or decision rules, On
the other hand, the judgemental com-
ponents are more difficult to automate.
They depend upon context-dependent
rules, very detailed discriminations, or
heuristic strategies. They are often dif-
ficult to state explicitly.

The clerical component is very suscep-
tible to error. A general finding of
human factors research is that most peo-
ple produce high failure rates in
repetitious tasks due to fatigue,
boredom, and loss of attention. For this
reason, automation of the clerical com-
ponent is usually a good idea.

Automation of the judgemental com-
ponent depends heavily on artificial in-
telligence approaches (including expert

systems). For example, consider the task
of making decisions about the successful

use of computer-based training.
Judgements about the suitability of a
course for computers or the appropriate
kind of system to use depend upon a
series of inter-related rules derived from
actual computer-based training projects.
These rules can be put in the form of an
expert system that provides training
managers with advice for specific in-
structional applications (Kearsley,
1985).

The Toolkit prototype focused on the
clerical component of ISD tasks. More
sophisticated software and a much more
detailed understanding of the judgemen-
tal process in instructional development
would be needed to go beyond this level.
2. What are the relationships among
different ISD tasks?

The Toolkit was designed as an in-
tegrated system that allowed the results
of one ISD task to be passed forward or
backward in time to another ISD task.
This raises the issue of the usual or possi-
ble data transfer paths among different
18D tasks, When ISD is done manually,
the flow from one task to another is

13



seldom identified. Furthermore, since it
typically takes place over a period of
days or weeks, it would be difficult to
track. In an automated ISDD system,
however, the transfer of data between
tasks can occur in a matter of seconds.
Since we would like to automate as
many transfers from task to task as
possible, these relationships are of con-
siderable importance in an automated
systern.

Figure 5 is a theoretical plot of the fre-
quency of transfers between the 17 ISD
tasks in the Toolkit prototype. Each cell
indicates the likelihood of an interaction
between one task and another. The
darker the cell at the intersection of any
two tasks, the greater the degree of in-
teraction predicted between them. For
example, some transfers are routine
{e.g., moving objectives to syllabus
development or test construction, lesson
specifications to storyboarding, evalua-
tion data to lesson specifications) while
others are rare. Note that the plot is
asymetrical; transfers have directionali-
ty. Most interactions are predicted to oc-
cur in a forward direction {the top left
diagenal of the matrix) rather than
backward (bottom right diagonal). To
validate this plot empirically, it would
be necessary to count the frequency of
task interactions in the Toolkit across
time

Another important part of this data
transfer issue is whether there are “op-
timal” ISD paths for a given instruc-
tional project and goals (e.g., least
time/cost, best quality outcomes,
smallest project team). By conceptualiz-
ing ISD tasks as nodes in a network con-
nected by their transfer paths, it is possi-
ble to examine optimal paths using
various network analysis methods. The
network will usually be different for
each project because projects include dif-
ferent subsets of [SD tasks and
start/stop at different tasks.

3. How will automabion affect the pro-
cess and outcomes of ISD?

There are many ways that automation
could change how ISD) is conducted and
the results of the process. For example,
the availability of 1SD functions in an
automated system could encourage their
use. ISD tasks that are tedious or dif-
ficult to do manually are likely to be
skipped. In an automated system, such
tasks may be carried out because they
are less tedious or difficult. Thus, one of
the possible effects of automated ISD
systems is that more ISD tasks would be
completed for a given project.

In an open architecture system like the

14

Toolkit, it is possible that a developer
might have a choice of two or more
functions for a given ISD task. For ex-
ample, in the prototype, there were two
levels of media selection: a macro
analysis for making judgements based
upon the attributes of an entire course,
and a micro analysis based upon the at-
tributes for every objective of a course.
In this situation, the developer must
select which function to use {or try
both), This requires the developer to
make a judgement about the relative
merits of one ISD method over another
for a given project. Will developers
make the best choice, and if they make
inappropriate choices, how and when
can this be detected?

This raises a fundamental point—how
can we measure the quality of ISD out-
comes in order to detect the effects of
automation? The ultimate test of ISD
quality is the extent to which the instruc-
tion works, i.e., helps people learn. It
would seem a simple matter to assess the
effectiveness of ISD methods by measur-
ing differences in job performance or
achievement. Of course, there are too
many intervening variables to make this
possible. A more feasible test for
automated ISD is to compare the results
of a particular task done manually and
via the system. In other words, if one
developer completes the task manually
and another developer (of matched ex-
perience} completes the task using the
system, what are the differences in the
resulting outcomes? Do they differ in
completeness, or correctness? Is a
syllabus or lesson produced by a
‘developer using the Toolkit as good,
better or worse than one produced by
the same developer without the system?

From our work with the Toolkit pro-
totype, it is clear that one of the major
effects of an automated ISD system is on
the time required to complete ISD tasks.
The use of the Toolkit produced time

savings in the order of 50 percent for
some tasks. Furthermore, the delay be-
tween finishing one task and beginning
another can be minimal. On the other
hand, some tasks took longer because
developers experimented with different
alternatives or variations. In addition,
when there were problems with the
system or the hardware, no work was
accomplished. It is apparent that the use
of automated ISD systems will change
the timescale of instructional develop-
ment, although not necessarily reduce
the time required.

4. What are the implications of.
automated ISD systems for the skill
levels of instructional developers?

One enduring misconception about
technology is that its major purpose is to
substitute for human abilities and
replace people. In fact, the rationale for
using technology is always to improve
productivity by augmenting or extend-
ing human abilities. In the case of
automated ISD, we are interested in
creating tools that allow developers to
accomplish more efficient or effective in-
structional development. The system
should compensate for the lack of ex-
perience of a new developer. The system
should also permit experienced develo-
pers to leverage their skills and eliminate
time wasted in routine aspects of ISD
tasks.

However, the effective use of an
automated system requires mastery of
the system. In the case of the Toolkit
prototype, it was necessary for develo-
pers to attain a general level of computer
literacy as well as obtain some familiari-
ty with the specific application programs
used (i.e., word processing, database
management, spreadsheets, etc.). A con-
siderable amount of time was required
to learn how to use all of the features
and capabilities of the system., For
developers to take advantage of the
system and use it productively, this time

Automated ISD prototypes like the Toolkit
help us explore new ISD capabilities that
are not possible without the computer.

JOURNAL OF INSTRUCTIONAL DEVELOPMENT



investment was essential.

One of the new skills needed by devel-
opers is the ability to select one ap-
proach versus another for a given train-
ing project. Most traditional training of
instructional developers tends to focus
on the use of a particular ISD metho-
dology. However, in an automated I1SD
system such as the Toolkit, it may be
necesssary to choose the most ap-
propriate ISD function from a selection
of possibilities. This sugpgests that
developers will need a more comprehen-
sive understanding of ISD in order to use
an automated system effectively.

The implication of these observations
is that an automated 1SD system may be
more valuable to an experienced
developer than a novice. This con-
sititutes a hypothesis that could be tested
in further research.

Conclusions

Because of time, budget, and equip-
ment limitations, it has not vet been
possible to extensively field test the
Toolkit prototype in actual ISD pro-
jects. Various parts of the Toolkit have
been used in projects and have led to the
observations and hypotheses described
in this article. The prototype has
demonstrated that an automated ISD
system provides a rich environment for
conducting research on instructional
development methods.

Orne intriguing aspect of automating
ISD that was not explored in the pro-
totype is the development of functions
for tasks that cannot be done well by
manual means. For example, Figure 2
lists functions for prototype develop-
ment and bullet-proofing. The pro-
totype development task involves
creating a sample of a lesson or course
before development starts. This task is
important to avoid misunderstandings
about the format or organization of
materials. However, because making a
prototype is time consuming and expen-
sive. this step is often skipped (with dire
consequences). However, there are pro-
grams available that make it possible to
easily create an electronic “mock-up” of
a printed, aundiovisual, video or com-
puter lesson that could be used as a pro-
totype.

Bullet-proofing involves testing for all
the content and logical flaws in instruc-
tional materials, especially interactive
programs. To test a lesson for all flaws,
it would be necessary to generate every
possible student response, It is easy to
write a computer program than will
generate every possible response at ran-

1986, VOL. 9, NO. 1

One of the valuable outcomes of research in
automating ISD is likely to be a more com-
plete understanding of the creative steps in
instructional development.

dom. It is also possible to write a pro-
gram that simulates a student and makes
likely responses for each instructional
sequence based upon typical learner
behavior {including misconceptions and
errors). Traditional bullet-proofing
technique depends upon field testing
that is very tedious and time-consuming,
Furthermore, traditional bullet-proofing
methods are not very comprehensive
and identify only a small fraction of
problems. )

The point of these two examples is
that automated ISD could help us ex-
plore new ISD) capabilities that are not
really possible without the computer,
The use of computers has already led to
the development of new theory in many
areas of instruction {Kearlsey, Hunter &
Seidel, 1983). There is no reason why it
couldn’t also have this effect in the in-
structional development area.

The major stumbling block in the
development of automated ISD systems
is our lack of detailed understanding of
the instructional development process.
In order to write a program to carry out
an ISD procedure, it must be possible to
describe it explicitly. However, much
ISD methodology is based upon in-
tuitive judgements and tacit knowledge.
In order to automate such processes, this
intuition and tacit knowledge must be
made explicit. One of the valuable out-
comes of research in automating ISD is
likely to be a more complete understand-
ing of the creative steps in instructional
development. It seems ironic that in
creating programs to mimic human
behavior, we should learn more about
it.

Acknowledgement: The Instructional
Toolkit prototype was the joint effort of
many employees of Courseware Inc. In
particular, Nile Gardner, Diana Pickens,
Susan Lindgren, and Kathy Rose made
significant contributions to its design
and development.

References

Braby, R., & Kincaid, J.P. (1981} Corﬁputer aided
authoring and editipg. Journal of Educational
Technology Systems, 10(2), 109-124,

Brecke, F., & Blaiwes, A. (1981). CASDAT: An
innovative approach to more efficient 1SD. jour-
nal of Educational Technology Systems, 10(3),
271-283.

Kearsley, G. (1985). The CBT advisor: An expert
systemt program for making decisions about
CBT. Performance & Instruction, 24(9), 15-17.

Kearsley, G. (1984). Authoring tools: An over-
view. Jowrnal of Computer-Based Instruction,
11(3), 67.

Kearsley, G. (1982). Authoring systems in
computer-based education. Communications of
the ACM, 25(7), 429-437.

Kearsley, G., Hunter, B., & Seidel, R.]. (1983).
Two decades of CBI research: What have we
learned? T.H.E Journal, 11{6 & 7).

Kearsley, G., & Seidel, R.J, (1985), Automation in
training and education. Human Factors, 27{1), .
61-74.

Kincaid, J.P., Braby, R.S., & Wuifeck, W.H.
{1983}). Computer aids for editing test questions.
Educational Technology, 23, 29-33.

Logan, R.S. (1981). Instructional Systems Design.
New York: Academic Press.

Merrill, M.D., & Wood, L.E. (1984}, Computer
guided instructional design. Journal of
Computer-Based Instruction, 11(2), 60-63.

Montague, W.E., Wulfeck, W.H., & Ellis, J.A.
{1983}, Quality CBI depends upon quality in-
structional design and quality implementation,
Journal of Computer-Based Instruction, 10(3&4),
90-93.,

O'Neal, AF, & OWNeal, HL. {1979). Author
management systems. In H.F, O'Neil (Ed.),
Issues in Instructional Systems Design. New
York: Academic Press.

O'Neil, H.F. (1979) Procedures for Instructional
Systems Design. New York: Academic Press.

15



