An Instructional System as Change Agent

Hannelore Vanderschmidt
Associate Professor
Ascher J. Segall
Professor
Center for Educational Development in Health
Boston University
67 Bay State Road
Boston, MA 02215

Since its inception in the mid-1970s, the Project on Curriculum Development in Preventive Medicine has sought to change teaching of preventive medicine in professional and continuing education. Project development staff have learned lessons that go beyond the domain of educational technology. They have had to solve questions of authorship, academic responsibility, and limitations in the state of preventive health care delivery systems. But most of all, they have had to cope with problems inherent in institutional change.

In this article, background information about preventive health services is discussed first to provide a context for understanding the project and its development, but its main focus is on three aspects of the project’s development process that are distinctive: 1) the identification of skills to be taught that are presently seldom employed in professional practice, and for which knowledge is limited or consensus on acceptable procedure is lacking; 2) the use and management of large numbers of experts from many disciplines to author instruction; and 3) dissemination strategies involving material design, “entrepreneurship” and retrieval systems for material access.

Background

Preventive health services focus on risk reduction and health promotion. For example, the risk of cardiovascular disease is reduced by smoking cessation, weight/cholesterol reduction, exercise, and hypertension control. Other preventable conditions include cancer of the lung, cirrhosis of the liver, many infectious diseases, and occupational disorders. Health promotion includes proper nutrition, exercise, lifestyle enhancement, and stress reduction. Some examples of preventive health services are immunization, blood pressure measurement, and pap smear analysis.

At the turn of the century, clinical preventive medicine was widely practiced in this country for infectious diseases like typhoid, tuberculosis, diphtheria, cholera, and tetanus. The fight against infectious diseases was aided by the availability of effective countermeasures, including immunization. With the decline of infectious disease, longevity increased and chronic diseases such as heart disease, cancer, and stroke became leading causes of death. Since infectious disease was no longer a problem and chronic disease was considered part of the natural aging process, the teaching of clinical prevention declined.

However, several decades of epidemiologic studies have demonstrated that primary and secondary chronic disease prevention measures are effective (United States Department of Health, Education, and Welfare, 1979). Primary prevention is any intervention with the purpose of reducing risk of disease occurrence, while secondary prevention is any intervention with the purpose of detecting asymptomatic remediable disease or reducing risk of disease recurrence (Stokes et al., 1982). Even though a scientific basis for clinical prevention now exists, the associated knowledge and skills are not emphasized in medical schools, nursing programs or primary care residencies. Only three percent of the medical school curriculum is currently devoted to preventive medicine (Bishop, 1983; AAMC, 1983; AMA, 1983; NLN, 1981).

To strengthen preventive medicine teaching, the Project on Curriculum Development in Preventive Medicine was undertaken by the Association of Teachers of Preventive Medicine and the Center for Educational Development in Health with the Kellogg Foundation support. The curriculum resulting from the project, entitled Health Maintenance in Clinical Practice, consists of three modules. Its contents and components are summarized in Figure 1. A systematic, competency-based approach was used to design the curriculum (Segall et al., 1978.)

Defining Outcomes

The first development task was to delineate the scope of professional performance in an area where skills are new, evolving, and seldom practiced. This was accomplished by first listing both generic responsibilities (those cutting across specific conditions or risks) and categorical responsibilities (those limited to a specific condition or risk). Outlining these responsibilities made it possible to identify a process for planning, implementing, and evaluating preventive services. An algorithm depicting the process, shown in Figure 2, has been found applicable to a range of services, including those associated with the cardiovascular risk factors of smoking, hypertension, and nutrition, as well as occupational health, breast cancer, alcohol abuse, immunization, and other responsibility categories. Developing a general procedure for performing professional responsibilities and several specific categorical examples was useful for conceptualizing complex, interrelated skills, and providing a framework for identifying these skills and organizing materials.

To verify responsibilities of physicians and nurses, two modified Delphi surveys (Linstone & Turoff, 1975) were conducted: the first with 50 practicing physicians; the second with 35 nurses. They were either engaged in clinical practice or were teaching clinical prevention. Panels of experts, composed
of physicians and nurses serving on the project’s advisory and steering committees, also were consulted. Both the Delphi results and the expert panel suggestions were used to determine the scope of the curriculum and the three major areas of module development.

Practitioners could respond to the Delphi articulately only in areas where they had some experience. Further, some performance discrepancies were identified that were not due to lack of skill or knowledge. For example, provision of mammograms to women over 40 is now recommended by the American Cancer Society (1980) but infrequently practiced because of organizational policy or lack of compensation by third party payers such as health insurance and maintenance organizations. Because of the inability of any one group of respondents to see the “total picture,” verifying assumptions about professional performance was accomplished using complementary groups. Moreover, instructional materials were developed that addressed skill/knowledge deficits, not policy issues beyond the control of the developers and their sponsors.

In deriving educational objectives from responsibilities there was a major behavioral/attitudinal component. Since some people smoke, eat high cholesterol foods, drink too much alcohol, and refrain from exercise because this helps them cope with everyday problems and frustrations, behavior modification skills had to be taught. Experiences of colleagues in behavioral medicine, especially those involved in major intervention trials such as the Multiple Risk Factor Intervention Trial, MRFFIT (Davidson et al., 1980; Benfari, 1981) were used to develop the training objectives. Because of the difficulties inherent in effecting behavior modification, some skills were defined for which there were few well established techniques compared to other aspects of medicine. Altering patient attitudes, however, is a critical part of preventive care, and it was essential to teach these skills and the behavior modification approaches that are available even though knowledge in the area is relatively limited. The credibility of the curriculum would be compromised if difficult-to-teach but important subjects were avoided.

Authoring

When curriculum projects are large scale and multidisciplinary, it is often necessary to enlist the aid of many authors — professional and scientific writers, educational technologists, and subject experts — with varied teaching backgrounds. In this project, authors who knew the subject matter, who could apply educational technology principles, and who were experienced teachers performed best. They did not have to read themselves into familiarity with the subject, and they had a clear sense about how to communicate content and how to create resources that instructors could use. Finally, most successful work was done by authors who worked throughout the development project, insuring continuity through different iterations of materials tryout and revision.

In addition to authors, other subject experts were needed to set objectives, identify readings and review draft materials. An overall editor checked format consistency, standardized bibliographies, developed cross references, and caught omissions and redundancy. Outside reviewers insured content accuracy, while student readers identified what was confusing, wordy, or difficult. Where disagreement arose, project directors refereed.

Figure 1

THE INSTRUCTIONAL SYSTEM: AN OVERVIEW

The Instructional System Consists of 3 Modules:

1. The Epidemiologic Basis of Clinical Prevention
2. Management for Preventive Services
3. Clinical Health Maintenance

EACH MODULE

<table>
<thead>
<tr>
<th>Incorporates 4 Components</th>
<th>Has 2 Facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Guidebook: methods and procedures for use in case studies, patient simulations and clinical encounters</td>
<td>1. Generic: encompassing those aspects of basic vocabulary, concepts, principles and competencies which are common to and can be applied in a wide range of categorical areas.</td>
</tr>
<tr>
<td>2. Learning Resources: exercises, case studies and supplementary references</td>
<td>2. Categorical: applications to specific diseases, conditions and health hazards (e.g., risk factors in coronary heart disease, occupational health hazards, alcoholism).</td>
</tr>
<tr>
<td>3. Anthology of key papers and supplementary references</td>
<td></td>
</tr>
<tr>
<td>4. Instructor’s recommended learning and education activities</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

Development of an Instructional System in Clinical Prevention

1. Define Professional Performance/Verify
2. Specify Instructional Objectives
3. Develop Instructional Materials
4. Field Test and Revise
5. Disseminate the Materials
Testing and Packaging

Initial tests in nine medical schools and a school of osteopathic medicine revealed that the user group required more than an instructor’s manuals, the only resource originally developed. They asked for cases/exercises, up-to-date readings, and a job aid (Lineberry & Bullock, 1980) for performing preventive procedures. As a result, a Learning Resources book, an Anthology of readings, and a Guidebook were added. Instructors required precise instructions as well as model answers to study questions so they could use lesser trained teaching staff not conversant with the details of a given preventive strategy. Because of the rapidly changing nature of preventive practices, senior faculty also welcomed the additional materials.

In its early revisions, the entire curriculum system was presented in a loose-leaf notebook with tabs for separate components. The volume was found “heavy and forbidding.” Users took out what they wanted from the notebook and left the rest. Some used articles only, in order to bring their standard course in preventive medicine up to date. Some used the exercises and case studies only, thus introducing interactive teaching into what would otherwise have been a lecture course. Some users adopted all offerings but changed the sequence.

Materials were repackaged accordingly, placed in twelve thinner books and bound and formatted for maximum flexibility. Further subdivision is likely. In some other settings, instructors may follow procedures slavishly and demand tight structure—indeed, it may be mandated by an organization. Such an approach would be rejected by this target instructor group working in varied institutional settings.

When making revisions, designers work down from the most general design specification (the job description and instructional objectives) to the specific aspects of instructional design. This top down approach, moving from the general to the specific, is a logical way of designing instruction and revising it. It is also cost effective, because testing the course when it is at a fairly high level of generality can indicate what additional components are needed. Initially creating many specific materials may result in a curriculum with many components that are redundant or unnecessary, and deletions are often more difficult to identify than additions.

Dissemination

In disseminating instructional materials to groups such as physicians, nurses, nutritionists, and physician assistants, the instructional designer must be aware of the political and social contexts of education. Some users will be sensitive to the role of women or to that of non-physicians as health care providers. Examples cited should reflect a range of user groups. Titles and terms included should be acceptable for all users, based on feedback from the intended users. Plans for dissemination should be considered early in designing and packaging materials.

A problem any instructional innovation faces is how to win converts. There are many reasons given for not adopting a new instructional program:

- I'm doing it already.
- I have little time for teaching. I have a
private practice and I do research on the side.
• In order to be promoted I need research publications. Good teaching
does not help.
• I’ll get around to it in a year or two.
• It was invented by you guys in the East. This is Miracle Falls, Idaho. We’ll
invent our own, thank you.
• Our curriculum is already crammed
full. We can’t add another thing.

To overcome resistance to our pro-
gram, efforts were made to gain con-
fidence by repeated visits, phone calls,
and letters. Instructors had to be urged
on. Many used the resources only after
they got to know project staff. In-
dividuals who do use the materials are
contacted frequently. Once they have
“bought into the system,” they often call
back to ask for further consultation, re-
quest additional material, and begin to
structure new courses. Once a preven-
tive health program is implemented, in-
suctors often want to see for
themselves how materials can be effec-
tively used. In this project, over sixty
such inquiries have been made by in-
suctors in health science institutions
throughout the world, and a network of
demonstration centers is being estab-
lished. The demonstration centers will:
• Offer courses for continuing educa-
tion of physicians and nurses in clinical
prevention.
• Introduce preventive initiatives into
residency training and graduate nursing
programs where clinical facilities are
available for delivering preventive ser-
vice. Here residents (graduate physi-
cians) and nurses can obtain “hands-on”
learning experience.
• Include the materials in clinical
demands and rotations of third and
fourth year medical and nursing
students, where students spend one to
several weeks at a time developing dif-
f erent specialized skills.
• Include the materials in first and sec-
ond year courses where the more didac-
tic portions of the three modules can be
 taught.

This integrated, comprehensive ap-
proach to the teaching of preventive
health care should serve as a stimulus to
the would-be user.

By the time the project is complete in
1986, there will be upward of 1,000 cur-
riculum components. Because of its
complexity, a plan has been developed
classified with computer retrieval of materials. The
data base and automated access system
depicted in Figure 3 will enable faculty
to pick and choose among holdings and
enhance flexibility in adoption and use
of materials. The system allows retrieval
not only by content, but by selected in-
structional design attributes.

Conclusion

What seems most attractive to the in-
suctors who use the program materials is
adapting them to their own instruc-
tional setting, rather than wholesale
adoption. Allowing adaptation engenders
change in successive approxima-
tions. This approach is particularly
appropriate in a time of scarce
resources, as it leads to gradual, con-
certed progress toward measurable
goals.

The project started out by applying a
systematic approach to instructional
design to the development of instruc-
tional materials in preventive medicine.
Both the approach and the products have
become more flexible. There
should be rigor in curriculum design but
other factors must be addressed to effect
institutional change. These include
developing a meaningful and credible
method of identifying new skills,
developing and programming materials
for adaptation to local needs, establishing
retrieval tools that facilitate adaptation,
establishing demonstration centers to
show how material can be applied, and
building interpersonal relationships be-
tween producers and users of materials.
Large scale projects also require the
identification of appropriate partic-
pants and coordinating their efforts to
effectively achieve desired outcomes.

References

Directory of American medical education.
Washington, DC: Author.
directory of residency training programs.
Chicago, IL: Author.
American Cancer Society. (1980). Guidelines for
the cancer related checkout. Recommendations
and rationale. CA: A Cancer Journal for Clinici-
sians, 30(4), 194-240.
Benfari, R. (1981). The multiple risk factor in-
tervention trial, MRFIT. The model for interven-
tion. Preventor Medicine, 10, 426-442.
Bishop, F.M. (1983). Departments, sections, and
programs of preventive/communit medicine
and public health in US medical schools. Journal
of Community Health, 8(4), 269-278.
Behavioral medicine: Changing health lifestyles.
instructional design library. Vol. 35. Englewood
method: Techniques and applications. Reading
MA: Addison-Wesley.
education in nursing: Key to a profes-
sional career in nursing. New York, NY: Na-
tional League for Nursing.
Segall, A.J., Vanderschmidt, H.F., Burglass, R., &
Frostman, T. (1975). Systematic course design
for the health fields. New York: John Wiley.
Stokes, J., Noren, J., & Shindell, S. (1982). Defini-
tion of terms and concepts applicable to clinical
preventive medicine. Journal of Community
Health, 8(1), 33-41.
U.S. Dept. HEW. (1979). Healthy people, the
Surgeon General’s report on health promotion
and disease prevention. Washington, DC:
USGPO.