Index

A
- Aarnoutse, C.A., 368
- Abrami, P.C., 239
- Abu-Issa, A., 426

Academic emotions, optimization, 67–68

Achievement Emotion Questionnaire (AEQ), 71

ACT. See **Active citizenship through technology (ACT)**

Action research
- CARN, 169
- computer based technology, 169
- contemporary movement, USA, 163
critical-emancipatory action research, Australia, 163 data analysis, 166
definition, 162
educational research, 165and educational technology courses, 168 integration, 168time, 168
- TPACK, 168
- emancipatory action research, 168
- engaging students, 165–166ethical considerations, 165implementation and reflection, 167movement, UK, 162–163PAR and PGIS, 167, 169political, personal and professional, 164process, data collection, 165projects, 165researcher’s journal, 166research groups, 167selection, focus, 165subcategories, 165technology-rich instruction, 169triangulating data, 166

in USA, Great Britain and Australia, 162

Active citizenship through technology (ACT), 575

Activity theory (AT)
- actual contextual factors, 152
- and ANT, 153–154, 157, 158applications, 152, 157contextual framework, 157contradictions, 153“development”, 153division of labor, 152dynamics and conflicts change, 153and ETR (see **Educational technology research (ETR))framework, 152–153implications, 158–159individual goal-based actions and operations, 152individual to societal learning, 152learning, 151methodological tool, 157modern technologies and expectations, 151multi-voicedness, 153second-generation activity system triangle, 152transformed object, 152
- Vygostky’s model, 152
- Actor network theory (ANT), 153–154, 157, 158
- ACT* theory. See **Adaptive control of thought (ACT*) theory**

ADA. See **Americans with Disabilities Act (ADA)**
- Adam, S., 351
- Adams, P.C., 485, 494
- Adams, S., 33
- Adams, W.K., 528

Adaptive control of thought (ACT*) theory, 10

Adaptive hypermedia systems (AHSs), 10

Adaptive learning technologies
- affective states, 773
cognitive abilities, 772–773context and environment, 774–775desktop-based learning, 775dynamic modeling approach, 770individualized learning experiences, 770
- learning material/activities, 769learning styles, 771–772LMSs, 769mobile, pervasive and ubiquitous environments, 775mobile settings and desktop-based, 770research prototypes, 776types, information, 776

Adaptive system
- AI and EDM, 432
description, 430developers and instructors, 431method, 431source, 430–431target, 431time, 431
- Adcock, A.B., 760, 764

ADDIE. See **Analyze, design, develop, implement and evaluate (ADDIE)**

Advanced Research Projects Agency-Education (ARPA-ED), 629

AECT. See **The Association for Educational Communications and Technology (AECT)**

AEQ. See **Achievement Emotion Questionnaire (AEQ)**
Affective artificial intelligence in education (AIED), 10
Affective states
collaborative student modeling approach, 773
description, 773
formal and supportive comments, 773
learning process, 773
Affordability, instructional design and job aids, 661
Affordances
interaction opportunities, 753
and limitations, VW
additional limitations, 728
assessment, 727–728
communication and collaboration spaces, 726–727
design mechanics, 726
experiential learning, 727
identity exploration, 726
meta-analysis, 726
spatial simulation, 727
Web 2.0 applications, 753
Agent-based ITSs, 428
Aguinis, H., 40
AHSs. See Adaptive hypermedia systems (AHSs)
AI. See Artificial intelligence (AI)
AIED. See Affective artificial intelligence in education (AIED)
Ainsworth, S.E., 726, 809
Akar, G.B., 771
Akbulut, Y., 843
AKOVIA. See Automated Knowledge Visualization and Assessment (AKOVIA)
ALA-reader, knowledge representation application, 290
foundation, 289–290
Albright, M., 258
Alessi, S., 455
Alevan, V.A.W.M.M., 504, 520
Alexander, C., 610
Al-Fadhli, S., 354
Alfes, K., 620
Alignment
and constellations of practice, 911
fostering research, 911
perspectives, 911
Allaire, J.C., 268
Allen, M., 257
Almond, R.G., 541
Alnoaimi, T., 889
AI Otaiba, S., 598
Alsop, G., 915
Alternative assessment, 302
Altrichter, H., 162, 165
Altschuld, J., 250
Amandi, A., 426, 771
Amendum, S.J., 597
The American Society for Training and Development (ASTD), 40
Americans with Disabilities Act (ADA), 118
American University in Cairo (AUC), 633
Amery, J., 701
Amsel, E., 454
Analogical reasoning. See Reasoning models
Analyze, design, develop, implement and evaluate (ADDIE), 116, 146
common procedures, 83
disorganized and unsystematic state, 611
generic instructional design paradigm, 80, 82
and HPT, 44
and IDs, 40
instructional design literature, 611
rectilinear portrayals, 80
systematic analysis and intervention, 40
work flow, 42
Anand, P., 35
Anderson, A.F., 491, 493
Anderson, C.A., 485, 491, 493, 497
Anderson, J.R., 10, 60
Anderson, R.C., 466, 467
Anderson, T., 250
Andrew-Ihrke, D., 351
Andrews, C.J., 122
Andrews, D.H., 79, 305, 610, 611
Andrews, M.D., 858, 859
Angeli, A.D., 761
Angeli, C., 102, 107
Angert, J.F., 899
Anglin, G.J., 386
Angrist, J., 240, 242–243
Answer until correct (AUC), 36
ANT. See Actor network theory (ANT)
Anthony, J., 208
Antonenko, P., 57
Anuradha, K.T., 714
Applications of CTA, healthcare training
dental hygienists, 541–542
nursing, 541
physicians, 541
surgery residents, 542
Applied research
english-language engineering education, 567
networks and conferences, 568
social sciences research, 568
Approximation to English (ATE), 35
AR. See Augmented reality (AR)
Arbreton, A., 520
Arcavi, A., 794
Archambault, L., 105
ARCS. See Attention, relevance, confidence and satisfaction (ARCS)
Artificial intelligence (AI)
challenges, 428–429
development process, 429
in education, 426
human intelligence, 426
ITSs (see Intelligent tutoring systems (ITSs))
research, 426–427
Artificial intelligence in education (AIED). See Artificial intelligence (AI)
ASPIRE. See Astrophysics Science Project Integrating Research & Education (ASPIRE)
Assessment
informal learning
CATs, 260
concept mapping, 260
definition, 258
embedded, 260
evaluation, 258
interviews, 261–262
journaling and reflective writing, 260
learners creation, formative, 261
measure, 259
multiple-method approach, 259
observations, 262
online discussions, 260–261
performance, 260
purposes, 258–259
quantitative/qualitative, 259
read, think-aloud protocols, 262
rubrics, 261
self and peer reviews, 260
surveys, 261
test and quizzes, 259
web resources, 263
wikis, 260
problem solving
analogical comparison, 273
classification, 270–271
coding schemes (see Coding schemes, problem-solving processes)
cognitive skills (see Cognitive skills assessment, problem solving)
description, 269
forms, 269, 270
knowledge structure, 270
multiple, 285
performance, 274
physical scenario, 271, 272
problem-posing stimulus, 271, 272
rubrics (see Rubrics, problem solving assessment)
student-construction, 280
text editing and jeopardy questions, 271, 272
translation, key propositions, 270
well-structured problems, 269
students’ literacy development
NETP, 595
student writing (see Student writing, assessment)
Assessment standards, ICT
computer-based tests, 326
device and economic resources, 326
educational scenarios, 326, 327
evaluation, 326
paper-and-pencil tests, 326
software and hardware, 326
teachers, 326
VLE/LMS, 326
The Association for Educational Communications and Technology (AECT), 6, 116, 897
ASTD. See The American Society for Training and Development (ASTD)
Asterhan, C.S.C., 440
Astleitner, H., 69–71
Astrophysics Science Project Integrating Research & Education (ASPIRE), 457–458
AT. See Activity theory (AT)
ATE. See Approximation to English (ATE)
Atkinson, R.C., 374
Atkinson, R.K., 497
Attention, relevance, confidence and satisfaction (ARCS), 70, 71
Atweh, B., 558
AUC. See Answer until correct (AUC)
Audio-Visual Communications Review (AVCR), 31
Augmented reality (AR)
cognitive tool, 735
constructivist/interpretivist theories, 735
description, 733
exocentric and egocentric, 734
immersion, 734
K-20 literature review (see K-20 AR literature review)
learning research teams and experiences, 735–737
learning theory, 734
location-aware and vision-based, 733–734
real-world contexts, 735
smartphone capabilities, 734
transfer, 734
Augustsson, G., 747, 749
Ausubel, D., 90
Authentic assessment, 302
description, 402
learning process, 403
mandatory characteristics, 402
with middle school students, 403
standards of, 402, 403
Authentic learning environments
Adventures of Jasper Woodbury problem-solving series, 400–401
affordances, Web 2.0 developments, 406–407
anchored instruction, 400
arguments and discussions, 404
“artificial problems”, 405
and authentic tasks (see Authentic tasks)
characteristics, situated learning, 401
cognition and legitimate peripheral participation, 400
temporary inventions, 401
defined, 400
description, 399–400
design and implementation, 407
direct instruction, 405–406
design and implementation, 407
educational design researchers, 407
extensive observational studies, 401
formal educational settings, 401
formal education settings, 399
Gagne’s Nine Events, instruction model, 400
highly realistic simulations, 405
information-rich resource, 400
interdisciplinary learning, subjects, 407
Jasper students performance, 401
philosophical foundation, “learning by doing”, 400
in practice, 403–404
in real work settings, 404
reasons, address real issues, 404–405
reported concerns, designs and relevant research, 404
restrictive administrative and assessment policies, 407
suspension of disbelief, 405
teachers, real experiences, 404
Authentic tasks
assessment (see Authentic assessment)
characteristics, 401
coaching and scaffolding, 402
description, 402
expert performances and processes modeling, 402
multiple roles and perspectives, 402
reflection and articulation, 402
technology-based learning environments, 401
Automated Knowledge Visualization and Assessment (AKOVIA)
analysis, 292–293
development, 293, 294
foundation, 292
framework, 292
measures, 291
Automatic scoring
Spanish essays, 329
student, 333
AVCR. See Audio-Visual Communications Review (AVCR)
Ayes, P., 391, 497
Azevedo, R., 504
B
Baddeley, A.D., 759
Baek, E.-O., 44, 46, 47
Baek, J., 135
Index

Bull, G., 108
Bull, S., 426
Burghardt, M.D., 675
Burgos, J.V., 782
Burke, S.C., 747, 750
Burk, F.L., 606
Burkhardt, H., 131, 137
Burnett, M., 897
Bushman, B.J., 397
Butler, D., 414

C

CAD. See Computer assisted design (CAD)
Calao, J., 486
Calderhead, J., 895
Calderwood, R., 472
CALL. See Computer-assisted language learning environments (CALL)
Callison, D., 403
Camaioni, L., 497
Cambell, D., 248, 251, 252
Campbell, D.T., 203
Campbell, J., 542, 544
Campbell, K., 652
Campbell, W.K., 820
Campo, M., 426, 771
Candler, C., 858, 859
Cantrell, P., 675
CAQDAS. See Computer assisted qualitative data analysis (CAQDAS)
Carless, D., 418, 419
Karlock, D., 715
CARN. See Collaborative Action Research Network (CARN)
Carney, R.N., 386
Carney, M., 244
Carpenter, T.P., 473
Carr, W., 163
Carson, S., 783
Carter, J., 626, 635
Caruso, J.B., 821
Carvajal, D., 229
CASA. See Computers as social actors (CASA)
Case study, qualitative research
 beginning to gain prominence, 185
description, 182
ECT, 182–183
educational research and qualitative tradition, 185–186
ethnography, 183
evidentiary standards, 186
grounded theory, 183–184
internal problems, 186
issues and trends, studying groups, 183, 184
methodologists, 182
qualitative-quantitative divide, 182
systematic empirical research, 182
Cassell, J., 703, 706
Castano-Munoz, J., 244
CAT. See Computerized adaptive tests (CAT)
Cattell, R.B., 205
Caudill, J., 782
Causal attribution, 69, 71
Causal expectancies, 69, 71
Cavanaugh, C., 168
CBI. See Computer-based instruction (CBI)
CEA. See Cost-effectiveness analysis (CEA)
Cennamo, K.S., 84, 257, 652, 653, 845

Center for Applied Research in Education (CARET), 636
Centre for Space Science and Technology Education in Asia and the
 Pacific (CSSTEAP), 636
Century, J., 251
CERQ. See Cognitive Emotion Regulation Questionnaire (CERQ)
Certified First Responder (CFR), 406
Certified Performance Technologists (CPTs), 40, 42
Certified Professionals in Learning and Performance (CPLPs), 40
Cervantez, R., 890
CFR. See Certified First Responder (CFR)
Cha, H.J., 771, 772
Champlin, J., 616
Chandler, P., 391, 497
Chang, C.-W., 353, 405
Chang, C.Y., 353
Change agent
 dramatic changes, 615
 human performance, 615
 models, 616
 research (see Research, change agency)
 theories and research (see Change management)
Change management
 agency, 617–618
diffusion to participation, 616–617
Chang, K.-E., 491
Chao, C.-J., 543
Chapin, A., 464
Chapelle, C., 521
Characteristics, smart toy
categorizations, 702
child playing, rosebud, 702
concepts/skills, 703
electronic sensors, 702
purposeful tasks, 702
sifteo, 702, 703
StoryTech, 702, 703
Charysky, D., 577, 643, 822
Chase, C., 762
Chase, M., 354
Chater, N., 472
Chen, E., 336–337
Chen, G.-D., 405
Cheng, P.C.H., 809
Children’s engineering
 academic programs and curricula, 674
 age and grade level, 674
 design in schools, 674–675
 desktop manufacturing (see Desktop manufacturing)
 K-12 education, 673
 personal manufacturing machines, 674
 STEM subjects, 674
The Children’s Internet Protection Act (CIPA), 120
The Children’s Online Privacy Protection Act (COPPA), 120
Ching, Y.-H., 747, 749, 750
Chinn, C.A., 412, 414, 451, 454, 456
Choi, S., 762, 764
Cho, K.L., 278, 279, 284, 506
Cho, V., 337
Choy, D., 844
Chee, S., 619
Christensen, R., 204, 214
Christensen, T.K., 657
Chung, H., 747, 748
Chu, H., 714
Churchill, D., 899
CI. See Cooperative inquiry (CI)
Collaboration scripts
definitions and guidance, roleholders, 443
micro and macro, 443
R&D, 444
research on, 443–444
social and epistemic, 444
Collaborative Action Research Network (CARN), 169
Collaborative learning
average level of participation, group work, 796, 798
climates changes, 795, 796
collaborative concept mapping, 795
constructed arguments, 795
CSCL, 438
decision-making process, 795
learning process, 795
MOOC’s, 796
open source software project, 796, 797
SNAPP, 796
social network, 795
TMBI
beyond classroom constraints, 533
challenges, 533–534
collaborative concept mapping, 795
descriptions, 533
face-to-face, handheld devices, 533
positive impact, students’ attitudes, 533
research, 534
visualizing code share contributions over time, 796, 797
Collaborative tasks, Web 2.0
blogs, 748–749
documents and concept mapping, 749
wiki, 749
Coller, B.D., 485, 492
Collins, A., 132, 258, 400, 504, 510, 512, 652
Collis, B., 155
Collocated collaborative learning (CSCL)
bias biannual conference and international journal, 695
kinesthetic learning, 695
multiple users, 695
small-group work, 695
Comeche, M.I., 204
Common Core State Standards (CCSS), 342–343
Communities of practice
audiences, 909–910
awareness and social processes, 914–915
contextual relevance, 908
design-based research, 915
developments, 915
educational communications and technology, 907
ethnographic approaches, 915
feature, 907
fostering (see Fostering research)
techniques, 914
Compensating support devices, 518–519
Competency. See Formative assessment
Computational modeling, model-based thinking, 531
Computer-assisted design (CAD)
activities, 678
curricula/technology-enhanced learning system, 683
curriculum, 675
drafting tools, 679
hands-on model, 683
industrial applications, 679
Computer-assisted language learning environments (CALL)
CMDA, 96
EFL and ESL, 95
language learning, 95
online environments, 96
research methods and questions, 95–96
Computer-assisted qualitative data analysis (CAQDAS)
capabilities, 224
competition, 225
limitations, 224
literature, 224
mid-1990s, 224–225
software project, 224
packages, 225
Web site, 225
Computer-based instruction (CBI)
individual screens, leaner, 34
normal lesson, 32
programmed instruction design, 32
white space, 35
Computer games
assistance/guidance, players, 491
in evaluation, 495
improvements, cognitive and psychomotor processes, 491
professional and scientific meetings, 483
recommendations, design, 497
Computerized adaptive tests (CAT), 327
Computer-mediated communication (CMC)
discourse analysis/procedures, 179
online discourse, 178–179
Computer-mediated discourse analysis (CMDA)
Blizzard’s World of WarCraft and NCSoft’s Lineage series, 94
CALL, 96
quantitative methods, 95
Computer numerical control (CNC), 676
Computer/paper-based scaffolding
description, 508–509
embedded, context-specific scaffolds, 509
generic scaffolds, 509–510
Computers as social actors (CASA), 758
Computer supported collaborative learning (CSCL), 27
acquisition, knowledge by individuals, 439
approaches, visualization, 795
argumentation skills, 439
assessing group processes
argumentation and relationships, 442
identification, interaction effects, 442
instructors, tool, 443
Lag sequential analysis, 442–443
measures and analysis, 442
research, 443
social network analysis and networked learning, 443
Tatiana tool, 442
temporal patterns, 442
blending, F2F and Online, 440–441
collaborative learning, 438
description, 437–438
designing
computer technology, 438
description, 437–438
designing
computer technology, 438
description, 437–438
looking forward, 439
networked learning, 438
social context, 798
Computer supported collaborative learning (CSCL) (cont.)
social interactions, 439
synchronous online CSCL, 440
technology, 438
valuable flexibility, time and space, 438
with Web 2.0 Technologies, 441
Computer-supported intentional learning environment
(CSILE), 9, 507–508
Conati, C., 426
Conative domain
vs. cognitive and affective, 124
every twentieth century, 124
“ethics”, 124
Reeve’s resurrection, 122
Conceptual age learning
K-12 schools, 92
REAL, 92
technology and curriculum, 92
traditional-transitional learning environments, 92
Confirmatory evaluation, 196–197
Connected teaching
teacher isolation, 628
transforming American Education, 635
Conner, M., 256
Connor, C.M., 596
Conole, G., 785, 914
Constantinou, C.P., 531
Constructivist epistemology
description, 877
educational technology, 877, 879
evaluation research, 878
implementation, 879
knowledge, 877
language games, 877
and learning theory, 877
logic models, 877, 878
needs assessment, 879
perspectives, learner, 877
program evaluation, 878
scientific inquiry, 879
USAFA students, 879
Constructivist principles of learning
“adjustment process”, 414
internal and external feedback, 415
multi-factorial workings, 414
“response certitude model”, 414
“sustainable feedback”, 414
task performance, 414
Context
adaptive system, 774
contextual information, 774
definition, 774
environmental data, 775
learner characteristics, 774
mobile technologies, 774
personal data, 775
Context-aware
K-20 teaching and learning, 735
smartphones and tablets, 733
Context modeling
adaptive support to learners., 770
adaptive system, 775
collaborative modeling approach, 774
dynamic modeling approach, 770
Contractor, F.J., 632
Conversational agent, 757

Cook, D., 857
Cook, M., 809
Cook, T., 248, 251, 252
Cooperative inquiry (CI), 180–181
Cooper, P.A., 374
COPPA. See The Children’s Online Privacy Protection Act (COPPA)
Corbeil, J.R., 715
Corey, S.M., 162
Cornelissen, F., 167
Correa, T., 822
Costable, M.F., 486, 492
Cost-effectiveness analysis (CEA)
acceptance, specifications and standards, 495
arguments, games in learning, 495
calculation, 240–241
computer technology, 239–240
costs constant and variations, 495
decision makers, 495
description, 494
distance education, 240
estimation, 239
games vs. conventional classroom instruction, 495
impact, 239
measurements, 239
online instruction, 240
research, 239
ROI (see Return on investment (ROI))
Costs of educational technology
analysis and efficiency (see Efficiency)
area, 244
description, 237
effectiveness (see Cost-effectiveness analysis)
methodological issues, 243–244
research, 245
review, 245
student learning, 245
Cowell, D., 146
Cox, M., 830
CPLPs. See Certified Professionals in Learning and Performance (CPLPs)
CPTs. See Certified Performance Technologists (CPTs)
Craik, K.J.W., 465
Crandall, B., 541
Creswell, J.W., 182, 222
Cross, J., 256, 257
Crossman, D.C., 146–148
cultural-historical theory
community involvement practices, 866
digital learning environment, 866
information systems design, 866
interface design metaphors, 867
online community, 868
type, interactivity, 867
Culture in learning
computer technology, 355
definition, 347–348
description, 347
e-learning (see e-learning)
ethnography, 349
guidance, 355–356
implications, literature review, 355
information and communication technologies, 356
instructional strategies, 347, 356
integration, 349
literature, 349
mathematics (see Mathematics education)
perspectives and paradigms, 349–350
science (see Science)
studies, 348
theoretical and conceptual research, 348–349
Culture-specific learning
applications, 351, 355
curriculum content, 355
mathematics, 351
pedagogy, 355
racial group, 348
science education, 352
Cumming, G., 207, 210
Cummings, R., 186
Cunningham, D.J., 374
Cvetanoska, M., 887
Czerniewicz, L., 912
Data
Dai, D.Y., 496
Dane, A., 251
D’Antoni, S., 782
Dass, P., 490
Data acquisition
age appropriateness/lack of basic IT skill, 204
calculation, power, 203
compatibility, 204–205
description, 201
external validity, 203
HTML, 202
lack of universal access, 203–204
Mark sense/OCR, 202
mobile survey administration, 203
paper-based surveys, 202
reliability, data gathered online, 204
social networking movement, 203
21st century, 201
web-based approaches, 202–203
Data analysis
CRC standard mathematical tables and formulae, 207–208
data mining, 205
descriptive statistics, 205
effect size calculators
Becker’s online, 206–207
descriptive statistics, classroom reading level index, 207
measure, 206–207
hypothesis testing, 205
MS access pre/post pairs matchup, 206
online binomial (sign) test, 208
purpose resources, 206
quantitative tools, 205
spreadsheet
effect size computations, 206
packages, 205–206
statistical packages
Amos, 209
LISREL, 209
R Project, 208–209
SPSS, 208
t-test calculators, 206
Data-based decision making. See Data-driven decision making (DDDM)
Data-driven decision making (DDDM)
accountability measure, 336
analysis and interpretation, 339
classroom, 337
collection and analysis, 338
description, 335–336
establishing goals and inquiry process, 339
features, 338
framework, 336
growth, 337
guides, schools, 338
implications, educational research and adoption, 341
CCSS, 342–343
evaluation and measurement, 342
quality, data systems, 341–342
value-added measures, 342
public education, 338
school/district level, 337
state/federal level, 336–337
student learning, 338
student work and teaching, 339
technological data systems, 340
Data visualization
applications, 209
categories, 212
data mining, 209
display techniques, 209
Eureqa, 212, 213
hierarchical cluster analysis, 214–215
late 1950s and early 1960s, 212–213
letter wheel based, 213
MacSpin, 216
Mathematica, 212
MATLAB®, 211
measurement, 212
Microsoft Space Telescope project, 216
multidimensional, 214
rank-sum analysis, 214
spreadsheet packages, 210
SPSS, 211
Stanford Binet versions, 215–216
three-dimensional space, centroids, 216
WiSTTI Model, 210
Wolfram Alpha, 211
WorldWide Telescope Project, 216
Davidson, J., 222–224, 229, 230
Davidson, M.R., 591
Davidson, R.A., 407
Davis, E.A., 506, 512
Davis, H.A., 70, 71
Davis, M., 114, 115
Davis, V., 643
Dawley, L., 727, 729
Dawson, K., 168
DBAE. See Discipline-based art education (DBAE)
DDR. See Design and development research (DDR)
Deale, C.S., 404
Dean, D., 455
De Angeli, A., 492
Dean, P.J., 45
Decision Function Coding System (DFCS), 284
Decision making
description, 472
mental simulations, 472
probabilistic reasoning, 473
and problem-solving strategies, surgical experts, 540
RPD model, 472
schema-based, 472
situation awareness and mental models, 472–473
Dede, C., 137, 529, 727, 729, 730
De Freitas, S., 94
deFreitas, S., 728, 729
de Groot, A.D., 4
de Jong, T., 58, 60, 452, 453, 455, 456, 460, 497, 506, 646, 810
de Laat, M., 443
Demetriadis, S., 425
Denessenm, E., 494
DeNisi, A., 415
Denzin, N.K., 174, 175, 185, 222
dePlatchett, N., 583
de Rosnay, M.D., 780
DeSchryver, M., 646
Desha, C., 563
Design
architecture, 605
curiosity and exploration, 656
designers and designing, 653–654
in education, 655–656
human–computer interface design, 653
IBSTPI and ISTE, 651
instructional designers, 651–652
instructional design guidelines, 653
instructional models (see Instructional design (ID))
instructors, 652
judgment and character, 656
naive/misconceptions, 653
studio-based education, 655
systematic process, 651
Design and development research (DDR)
activities and interests, 142
classification, 142
comprehensive case study, 146
computer-based training, 143
computer system, 144
conduct model research, 144–145
description, 142
 designers working, 146
e-learning, 146–147
evaluation, 148–149
formative evaluation, learning game, 143–144
Gilbert’s behavioral engineering model, 146
IDT field, 142
ISD process, 143
models and procedures, 142
multimedia curriculum, 144
multiple intelligence design model, 146
nature, 141
opinions, 141–142
performance support tool, teachers, 144
problems, 147–148
product and tool research, 147
projects, 142–143
researchers, 149
research projects, 142
settings and participants, research, 148
task-centered and peer-interactive course redesign, 143
transfer model, 145
validation research, 145–146
visual information, 145
web-based knowledge management system, 145
Web 2.0 system, community and teacher, 143
Design and development tools. See Design and development research (DDR)
Design and technology trends, visual arts
DBAE, 582–583
ISTE and NAEA, 583
national visual arts standards, 583
NETS-S and ISTE, 583
theoretical influences, 583–584
Design-based research, 34, 35
Design experiments, 134, 135
Design knowledge and skills, 652
studio curriculum, 655
Design models. See also Instructional design
decision-making context, 605
description, 605
ISD process, 606
IDT field, 605
instructional designers, 651–652
instructional design guidelines, 653
instructional models (see Instructional design (ID))
instructors, 652
judgment and character, 656
naive/misconceptions, 653
studio-based education, 655
systematic process, 651
Design research. See Educational design research
Design science
artificial objects, 553
multidimensional nature, 559
systematic evaluation, 553
Desimone, L.M., 186
Desktop manufacturing
automating, 675–676
CNC and CAD, 676
digital fabricators, 676
3D printing, 676
3D scanners, 675, 676
emergence, 676–677
FabLab, 676
motor skills and student achievement, 681
NAE award, 680
NSF-supported project, 680
in schools (see Schools, desktop manufacturing)
school science and mathematics, 680–681
virtual and physical representations, 682–683
Developmental psychology
cognitive development, children, 24
formal operational stage, 24
mental representations, 24
one-year-old infant, 24
sensorimotor stage, 24
Dewey, J., 4, 132, 582, 659
deWinstanley, P., 497
Dey, A.K., 774
Dholakia, U., 784
Diamond, J., 262
Diamond, S., 404
Diaz, M.I., 204
Index
E
Earle, R.S., 898
e-Books
commodity and publishers, 718
collection, 712–713
description, 711
designing, classroom, 715, 716
digitizing books, 716–717
in educational contexts (see Educational contexts, e-Books)
e-reader, 718
hardware, 712
K-12 contexts, 711
printing press, 711–712
professional communication and publishing, 717
proof-of-concept projects, 719
and publishers, 715
reading habits, 716
“rendering”, 717
research, attitudes, 716
software, 712
system, 717, 718
transformation process, 717
use of, 712
ECD. See Evidence-centered design (ECD)
Eckblad, G., 469, 470
Economic development, ICT, 885
ECT. See Educational communications and technology (ECT)
ECTJ. See Educational Communications and Technology Journal (ECTJ)
EDM. See Educational data mining (EDM)
Edmonds, G., 79
Educational communications and technology (ECT)
approaches, 179, 181–182
approaches and tensions, 175
case study, 182–183
educational studies, 175
in Europe and Middle East, 175–176
evidence-based practice, 185
heated debate, 185
Educational Communications and Technology Journal (ECTJ), 31
Educational contexts, e-Books
in classroom, 714
instructors, 715
in libraries, 714
research, 713
research on hardware, 713–714
students, 714–715
Educational data mining (EDM)
applications, personalization, 430
challenges, 430
clustering techniques, 429
discovery with models, 429
prediction, 429
relationship mining techniques, 429
on research, 429
text mining, 429–430
learning tools, 154
manageable data, 154
reactions to innovation, 156
tensions and contradictions, 154
Educational Technology Research & Development (ETR&D), 31–32
Educational technology units (ETUs), 859
Educational testing service (ETS), 329
Education, Health and Human Services (EHHS), 636
Education reform, ICT polices
curriculum, 886
and economic development, 886
ERI/KE, 886
social equity, 890
and transformation, 885
EEG.
See Electroencephalography (EEG)
EER.
See Engineering education research (EER)
EETT. See Enhancing Education Through Technology (EETT)
Efficiency
cost-benefit, 238
cost-effectiveness, 238
cost-utility and cost-feasibility, 238
resource, 237–238
EFL. See English-as-a-foreign-language (EFL)
EHHS. See Education, Health and Human Services (EHHS)
Eisenberg, M., 822
Eisner, E.W., 585, 587
Ejersbo, E., 135
Ekeberg, S., 415
Elders, E., 404
e-learning
analysis, culture and learning, 353–354
communication, 354
international higher education, 354
learners influences, 354
learner’s interactions, 354
perceptions and attitudes, students, 354
reviews, 354–355
synchronous and asynchronous, 354
technological supports, 354
eLearning standards
educational modeling languages, 663
ICT-based learning platforms, 663
IMS-LD, 664
learning object paradigm, 664
RELOAD, 664
Electroencephalography (EEG)
and ERPs
definition, 53
human brainwave rhythms, 53, 54
language-related components, 54
theta and alpha oscillations, working-memory, 53–54
tracking changes, cerebral blood flow, 53
and fNIRS, 57
temporal resolution, 57
learners’ mental workload, 57
Electronic books
E-book readers, 713
researchers and publishers, 713
usage patterns, 718
Electronic mail (E-mail) management, 325
Electronic medical records (EMR), 854
Electronic Pedagogical Content Knowledge (ePCK), 103
Electronic performance support system (EPSS), 144
Elementary and Secondary Education Act (ESEA), 626–627
Elementary and Secondary Education Act of 2001, 839
Elen, J., 427, 518–522, 645
Elgort, I., 747, 749, 752
Eliahu, M., 489, 494
Ellaway, R., 854, 857
Elliot, A.J., 521
Elliot, J., 162, 163
Ellison, A., 203
Ellison, N.B., 747, 751
Elmore, R., 336
Elwood, S., 169
Ely, D.P., 115, 616
Ely, K., 492, 493
Emans, B., 506
Embedded, context-specific scaffolds
definition, 509
in high school
science instruction, 509
social studies instruction, 509
in middle school, science instruction, 509
Emdin, C., 353
Emergency Medical Technician (EMT), 406
Emotional experience
control-value theory, 71
learners’ emotions, 69
models and approaches, 69–70
theory-driven interventions, 69
Emotion measurement
description, 71
emotional responses, 72
instruments, 71
interventions and evaluation programs, 72
problems, 72
technologies, 71–72
Emotion regulation
appraisal process, 69
appraises, 68
Bill values, 68
causal structure, 68–69
controllability of actions, 69
meaning structure, 68
people, 69
person’s expectancy and perceived values, 68
Emotion Regulation During Test Taking scale (ERT), 71
EMR. See Electronic medical records (EMR)
EMT. See Emergency Medical Technician (EMT)
Ende, J., 417
Endicott, L., 121
Engeström, Y., 152, 153, 155–158
Engineering education
academic status, 565
categories, 567
EER (see Engineering education research (EER))
Gartner hype cycle, 564
global development, 567
industrial revolution, 563
information technology, 563
pedagogical research and development centers, 565–566
R&D stage, 564
renewal transitions and, 563, 564
research, 566–567
social sciences investigation, 567
Engineering education research (EER)
JEE and EJEE reports, 567
research agenda, 568
English-as-a-foreign-language (EFL), 95, 96
English-as-a-second-language (ESL), 95, 96
English, L., 553
Enhancing Education Through Technology (EETT)
annual technology survey, 632
district and school implementation, 630
and SEAs, 630
temporary bonus, 627
Ennis, R.H., 278
Entertainment Software Association (ESA), 94, 483
ePCK. See Electronic Pedagogical Content Knowledge (ePCK)
Epistemology, 96
EPSS. See Electronic performance support system (EPSS)
Ercolani, P., 497
Erlandson, B.E., 729
Erstad, O., 830
ERT. See Emotion Regulation During Test Taking scale (ERT)
Ertl, B., 444
Ertmer, P.A., 14, 85, 656, 845
Escribe, C., 520
ESEA. See Elementary and Secondary Education Act (ESEA)
Eshet, Y., 492
ESL. See English-as-a-second-language (ESL)
Espinosa, L., 492
Essential processing
managing, 391
modality principle, 391–392
pretraining principle, 391
probability problems and algebra equations, 391
Estelle, L., 714, 718
Estes, F., 540
Ethics across the curriculum
current analysis, 117
dergree and certificate programs, the USA and Canada, 117
faculty responses, 117
professional practice, 118
research and evidence-based theory, 116–117
survey responses, 117
Ethics as design, 123
Ethnography, qualitative approach, 183
ETR. See Educational technology research (ETR)
ETR&D. See Educational Technology Research & Development (ETR&D)
ETS. See Educational testing service (ETS)
ETUs. See Educational technology units (ETUs)
European Computer Driving License Foundation (ECDLF), 829
Evaluation
games
reduce, test anxiety, 496
research, psychometric properties, 496
“stealth” paradigm, 495–496
informal learning, 258
Evans, J.S., 471
Evans, M.A., 442, 691, 696
Event-related potentials (ERPs). See Electroencephalography (EEG)
Evers, J.C., 223
Evidence-based CTA method
assessment, 545, 546
guided training design, 545–547
knowledge captured in interview, 544–545
research, healthcare instruction, 544
Evidence-based practice
audiences, 909
digital scholarship, 914–915
policy, 909
Evidence-centered design (ECD), 314
Experimental design. See Program evaluation
Expertise, CTA
automated and nonconscious, 540
employer satisfaction, healthcare graduates, 541
experts don’t know what they don’t know, 540
meta-analysis, 540–541
External validity
CBI screen design, 34, 35
individual screen design, 34
vs. internal, 35
participants, 35
realistic learning, 35–36
Extraneous processing
coherence principle, 388–389
expectation principle, 390–391
reducing, 388, 389
redundancy principle, 390
seductive details, 389
signaling principle, 389
spatial contiguity principle, 390
temporal contiguity principle, 390
visual signaling, 389–390
Eysenbach, G., 860
Eysink, T.H.S., 452
F
Facer, K., 739
Face-to-Face (F2F), synchronous CSCL, 439–440
Falcao, T.P., 439
Falconer, I., 911
Falk, J.H., 256, 258, 259, 262
Fall, L.H., 858
The Family Educational Rights and Privacy Act (FERPA), 120
Farrell, G., 884
Fear, envy, anger, sympathy and pleasure (FEASP)
classroom, 70
“emotionally sound instruction”, 69
Keller’s ARCS model, 71
FEASP. See Fear, envy, anger, sympathy and pleasure (FEASP)
Feedback models
constructivist (see Constructivist principles of learning)
cybernetics to sandwich making, 419–420
definition, 412–413
description, 411–412
on educator, 412, 416
educator and learner perspectives, 418–419
higher education and professional education, 412
idealised and actual practices, 419
implications, program design, 420–421
learner performance and motivation, 415–416
learner surveys, 412
mechanical model, 413–414
observations, in situ, 419
properties, 413
quality (see Feedback quality)
and self-evaluation, sustainable learning, 421
self-evaluative capacities, 419
self-monitoring and self-regulation, 419
traditional “feedback rituals”, 412
Feedback quality
behaviours and specific performances, 417
“disguised corrective strategies”, 417
properties, 416
qualities and perceived qualities, “teacher”, 417–418
self-concept formation, 416–417
structure feedback messages, 416
Index

language, 913
outputs, 915
practical value, 911
practitioners, 911, 912
processes, 911
researchers functions, 913–914
sharing evidence, 912
standardized representations, 912
traditions, 911
Fraas, J.W., 496
Fraj, F., 889
Francom, G., 143, 147, 149
Frechette, C., 762
Frederiksen, C.H., 809
Freeman, C., 251
Freeman, H.E., 495
Frei, P., 704
Freire, P., 164
Frensch, P.A., 497
Freudenthal, H., 552–557
Friesen, N., 911, 914
Friese, S., 222
Front-end analysis, CTA, 547
Fryer-Edwards, K., 857
Fullan, M., 617
Functional magnetic resonance imaging (fMRI)
advantages, 52
application, 53
BOLD, 52
hemoglobin, 52
participants, headphones, 52–53
positron emission tomography, 52 “see” changes in brain activity, 52
Functional near-infrared spectroscopy (fNIRS)
applications, 53
functional and practical limitations, 53
learning and instruction, 53
neurotechnology penetration, 53
temporal resolution, 53
Funk, S.G., 682
Future Learning Environment (FLE3), 508
advisory, 365–366
development, learning ability, 360–361
functions, 368
practical implications, 368
and SDL (see Self-direct learning (SDL))
self-assessment, 367
and SRL (see Self-regulated learning (SRL))
and STEPP, 366
students’ ability, 367
G
Gagné, R.M., 3, 7, 22, 40, 90, 608, 609, 611, 910
Gaible, E., 884
Galston, W.A., 575
Game-based learning
affect, behavior and performance, 493
aggression, 493
attitudes toward, 494
attraction of, 498
CEA (see Cost-effectiveness analysis (CEA))
data mastering, external sources, 493
enhancing cognitive processes (see Cognitive processes, game-based learning)
ESA, 483
evaluation (see Evaluation, games)
Game-based learning (cont.)
experiential/constructivist, 484
games with pro-social content, 494
instructional delivery systems, 496
instructional methods, 492
integration, courses of study, 492
motivational qualities, educators and trainers, 483
negative relationships, school learning and computer
 game playing, 493
research, 492
research and theoretical development, 496
research, games and learning, 484–490
school learning, 493
taxonomy, 496–497
technology-based instruction, 492
time, 492
transfer, games to external tasks (see Transfer of learning)
Garcia, E., 430
García, P., 426, 771
Gardner, P., 747
Garland, V.E., 844
Gay, G., 865–867
Gee, J.P., 95, 258, 261
Geertz, C., 183
Gehlbach, H., 577
GEL instructional demonstration based on central line CTA, 545, 547
Generational differences
 amusement and social communication, 825
 beliefs and behaviors, 819
 common location, history, 819
 curriculum development, 824–825
 diversity, 823
 educational design research, 825
 labels and dates, sources, 818
 location, history, 819
 perceived membership, 819
 speed, transition, 825
 technology integration, 823–824
 theories and assertions, 819
 traditional retirement age, 817
Generative processing
 anchoring principle, 393
 concretizing principle, 393
 elaboration principle, 393
 fostering, 392
 guided discovery and questioning principle, 393
 image and embodiment principle, 393
 multimedia principle, 392
 personalization principle, 392
 testing and self-explanation principle, 393
 voice principle, 392–393
 worked-example principle, 393
Generic scaffolds
 definition, 509
 in high school, science, 510
 intersubjectivity, customization and transfer of responsibility, 510
 in middle school
 science, 509–510
 social studies, 510
 in university, economics, 510
Gentile, D.A., 487, 493, 495–497
Gentry, L.B., 843
Gentry, M., 403
Georgiadou, E., 425
Gerjets, P.H., 12
Gershenfeld, N.A., 676
Gestalt psychology
 “einstellung”, 23
 implications, 23
 instruction and teaching, 23
 theory, 23
 Wertheimer’s approach, 23
Gibbons, A.S., 6, 376, 377, 610
Gibbons, J.D., 212
Gibson, W., 179
Gigerenzer, G., 472
Gijlers, H., 453, 455, 506
Gilbert, E., 797
Gilbert, L., 226
Gilbert, T.F., 40, 43
Gillies, R.M., 506
Gill, M.G., 895
Ginn, P., 390, 392
Glazewski, K.D., 506
Glesne, C., 166
Glos, J., 703
Gobert, J.D., 533
Goel, V., 654
Goetz, J.P., 222
Goetz, T., 469
Gogus, A., 854
Goldberg, L.B., 576
Goldman, S.R., 596
Goldstone, R.L., 809
Gong, Z., 591
Gonzalez-Sanmamed, M., 847
Goodson, I., 162
Goodson, L.A., 79, 610, 611
Good, T., 644
Goodyear, P., 83, 444
Gopher, D., 484, 487, 491, 497
Gorard, S., 175
Gordon, J., 610
Gordon, R., 406
Goswami, U., 60
Grabinger, R.S., 34, 35, 93
Grabowski, B.L., 378, 771
Graesser, A.C., 763
Graf, S., 771–775
Graham-Rowe, D., 713
Grant, L., 751
Gräsel, C., 522, 810, 811
Gravemeijer, K., 135, 556, 557
Gray, L., 841
Green, C.S., 487, 491, 497
Greene, B.A., 518
Greenfield, P.M., 497
Greer, B., 551
Greitemeyer, T., 484, 487, 494
Gremmen, H., 487, 492, 497
Gretschel-Leiter, K., 541
Gross, J.J., 70, 71
Grounded theory
 case study, qualitative research, 183–184
 definition, 183
Grunert, J.A., 378
Guba, E.G., 138, 222
Guerrera, C., 506
Human Computer Interaction Lab (HCIL), 181, 182

Human performance technology (HPT), ID

Hundhausen, C.D., 794
Hundley, V., 251
Hung, W-C., 144, 147–149, 269
Hur, J.W., 842
Hutchinson, C.S., 42
Hutchinson, D., 595
Hwang, G.-J., 774
Hyle, A.E., 619
Hylén, J., 780, 782

Hypothesis generation, inquiry learning
scaffolding, 455
scientific reasoning, 453

I

IBL. See Inquiry-based learning (IBL)

IBSTPI. See International Board for Training, Performance and Instruction (IBSTPI)

ICAI. See Intelligent computer-assisted instruction (ICAI)

ICT competencies
definition, 322
digital literacy, 322, 323
literacy (see ICT literacy assessment)
manipulation, software, 323
professionals and nonprofessionals, 323
Web-based translators, 322

ICT impact
computers, 889
and cost, 884
economic, 889
leverage community, 887
social, 885
student learning, 890
teacher and student practices, 889–890
vision, 886

ICT literacy assessment
computer, 322, 323
digital, 322, 323

ICT policy, developing countries
classrooms, 884–885
economic development, 885
education, 884
multiple rationales, 886
OLPC, 884
perspective, 884
and planning, 884
programs and resources, 886–887
reform, education, 885–886
social progress, 885
structure, 886
UNESCO-report, 885
vision, 886

ICT-related PCK. See ICT-related pedagogical content knowledge (ICT-related PCK)

ICT-related pedagogical content knowledge
(ICT-related PCK), 102–103

ICTs. See Information and communication technologies (ICTs)

ICT-Simulation Assessment Software (ICT-SAS)
academic/certification, 329
benefits, 329
certification, 329
data-mining model, 329
design, administration and workstations test, 329
design tools, 329
desktop environment, 330
environment, 329
hierarchical scheme, 329–330
operating system and notepad, 331
scoring pseudo code, 332–333
scoring scheme, 332
slide presentation, E-mail, internet and database, 331
text processor, 331
worksheet, 331, 332

I.D. See Instructional design (ID)

IDI. See Instructional Development Institute (IDI)

IDT. See Instructional Design and Technology (IDT)

IES. See Institute of Education Sciences (IES)

Ifenthaler, D., 476, 477

Immersion technologies
commercial growth, 731
design-based researchers, 731
game-like fantasy environments, 725
repetitive tasks, 727
simulations, 724
situated and constructivist, 725
situated learning, 721

Individual and group differences, 866

Inducing support devices, 519

Informal learning
assessment (see Assessment)
definitions and dimensions, 256–257
description, 255–256
environments, 255
framework, 257
meaning, 256
perspectives, 256
recommendations, 262–263
review, 256
science (see Informal science education)

Informal science education
eLeaning, 257
projects and programs, 257
“strands of science learning”, NRC report, 257–258
success and effectiveness, 257

Information and communication technologies (ICTs)
assessment
knowledge and skills, 323
measurement, digital literacy, 323–324
requirements (see Assessment standards, ICT)
software (see ICT-Simulation Assessment Software (ICT-SAS))
statistics report, 324
competencies (see ICT competencies)
description, 322
developing countries
community engagement, 888
cost, 888–889
deploying, infrastructure, 887
descriptive reports, 889
electronics, 888
Intel’s Teach program, 884
maintenance and support, 887
and OLPC, 883–884
policies (see ICT policy, developing countries)
research, 889
schools, 884
student learning, 890
teacher and student practices, 889–890
teacher training, 887–888
World Bank, 884
development, individuals motivations, 321–322
in education, 665
evaluation
computer-assisted presentations, 325
CVT, 324
data management, 325
definition, 324
Electronic mail (E-mail) management, 325
environment, 325
human aspects, 325
image handling, 325–326
information technologies, 326
organizing folders and files, 325
spreadsheet, 325
standards, technological literacy, 324–325
syllabus, 325
taxonomies, 324
text processing, 325
verbs and verb phrases, 324
instructional design process, 660
learning platforms, 663
online test (see Online testing, ICT)

Information processing theory
implications, 25
instruction, 25
learners, 25
long-term memory, 25
psychology, 25
sensory register, 25
short-term memory, 25

Information visualization
data attributes/types, 790
human interaction, 790
research, 789
taxonomies, 791

Innovative technologies, 865
Inquiry-based learning (IBL), 93

Inquiry learning
description, 451
educational studies, scaffolding (see Scaffolding, inquiry learning)
evidence-based design, software scaffolds, 452
meta-analytical findings, 452
presence, learner support, 452
project-based science classrooms, 452
psychological research, scientific reasoning (see Scientific reasoning, inquiry learning)
scientific reasoning skills, 451
software development (see Learning environment)

Institute of Education Sciences (IES), 636
Instruction. See Instructional design (ID)
Instructional and non-instructional products, 142
Instructional communications system, 374, 375
Instructional design (ID), 861
assumptions, 78–79
authoring tools and languages, 660–661
A-V movement, 607
Briggs, 608–609
categories, 84
characteristics, 84
comprehensive collection, 84
conceptual tools, 80–82
CPP CTA method, 544
cybernetic iteration, 611
description, 78, 605
design models, 610–611
development, 78
e-learning standards (see eLearning standards)
emerging models, design, 608
expert systems and automated/guided ID, 661–663
guided training, 545–547
Gustafson’s classification factors, 83
high-level processes, 610
and HPT (see Human performance technology (HPT), ID)
human learning, 77
ICT and, 660
individual to distributed, 667
information-based to knowledge model-based, 667
instructional design model, assumptions, 78
intended, 85
ISD, 78
and job aids, 661
latter type, 605
learning and teaching activities, 659
life cycle, learning environment, 660
micro-learning activities, 79
model creation and application, 610
models, 79–80
models proliferation, 609–610
operational tools, 82–83
paradigm, 84
“plans”, 606
professionalization and finn, 607
research, 546
revised taxonomy, 84
in 2000s
CALL (see Computer-assisted language learning environments (CALL))
conceptual learning, 92–93
content creation, 90
development, 96
educational market, 94
Four Ages of Educational Technology, 89
game-based learning, 94–95
Instructional design (ID) (cont.)

K-12 students, 93
learning environments, 89–92
learning sciences, 93
and learning taxonomies, 90
message design, 90–91
minicomputers, 94
PBL, 93
rudimentary, 90
simulation, 91
systematized models and theories, 89
task analysis, 90
technology, 90
situations, 84, 85
social/semantic web environments, 664–665
strategy components, 659
supporting instructional design, 666–667
systematic approach to delivering programmed, 78
“systematic method for designers”, 608
systems approach, emergence, 609
systems approach, origins, 609
taxonomy, 83–85
teaching and learning, 78, 79
teaching machines and programmed learning, 607–608
theory and educational practice, 659
tutoring to open learning design, 665–666
Tyler and eight-year studies, 606–607
typical journal article, 85
validation, 85
Visscher–Voerman’s intent, 83–84
VW
design and development, 728
design-based research, 729–731
popular companies, 728
simulations, 728
strategies, 728, 729
Unity 3D, 729

Instructional design and technology (IDT). See also Instructional systems design
design and development research, 142
online learning, 148
Instructional designer, 39
Instructional Development Institute (IDI), 79
Instructional development, systems approach, 607
Instructional engineering
face designers, 666
support designers, 668

Instructional message design
assumption, 374
communications theory
behaviorism, 373
human information-processing, 374
interaction, 373
learning theory, 373
teaching-learning problems, 372
transmission, 372–373
compilations, 374
content, strategies and control, 377
conversation, 377, 378
definitional problems, 375
description, 372
design, 371
devise technologies, 371–372
differentiation, 379
explosion, 372
framework, 376–377
media attribution, 375–376
media-logic and data management, 377
metaphor, 376
methodology, 376
multimedia learning, 372
philosophical mismatch, 374–375
process, 377
representation, 377
research paradigm, 378
syntheses, generalized principles, 375
systems philosophy, 376
technology-facilitated environments, 377
traditional, 372

Instructional scaffolding
computer/paper-based (see Computer/paper-based scaffolding)
consciousness and higher order thinking, 504
definition, 503–504
description, modalities, 505
design theory, 511
domain-specific knowledge, 512
dynamic assessment and fading, 511–512
educational technology and learning sciences, 503
factors, influence students’ reception, 505
goals, theoretical foundations, 504
mechanisms, 505
meta-design guidelines, 510–511
one-to-one (see One-to-one scaffolding)
one-to-one vs. computer-based scaffolding, 513
peer (see Peer scaffolding)
process, parents helping infants, 504
researchers, meta-analysis, 513
transfer of responsibility, 512–513
ZPDs, 504

Instructional strategies, 347, 355

Instructional systems design (ISD) model, 78, 119, 143, 144
academic titles, 609
description, 893
implementation, 894
materials and programs, 893
MI theory, 146
teacher (see Teacher education)
and technology, classrooms (see Classroom design and technology)

Instructional Systems Development (ISD) model
definition, 42
and HPT, 42

Instructional technology
ethical issues, 843–844
professional development, 842–843

Intelligent computer-assisted instruction (ICAI), 10, 12
Intelligent tutoring systems (ITSs), 10, 758
affect recognition, 428
agent-based, 428
description, 426–427
knowledge-based (see Knowledge-based ITSs)

Interactive spaces
devices and displays, 693–694
keyboard and mouse, 687–688
and surfaces (see Interactive surfaces)

Interactive surfaces
ACM conference, 688
CSCL, 695
direct input, 694
educational practice, 696
educational research, 696
foundational hardware, 688
IWBs (see Interactive whiteboards (IWBs))
kinesthetic learning, 695–696
multiple access points, 694–695
natural user interfaces, 688
revolutions, 688
tabletops (see Interactive tabletops)
tangibles, interfaces, 589
ubiquitous computing, 688
Kinesthetic learning, 695–696
Multiple access points, 694–695
Natural user interfaces, 688
Revolutions, 688
Tabletops (see Interactive tabletops)
Tangibles, interfaces, 589
Ubiquitous computing, 688

Interactive tabletops
commercial systems, 691
description, 690
horizontal orientation, 691
Microsoft surface, 691
operating systems, 691
touch-based, 691–693

Interactive whiteboards (IWBs), 690
Internal validity
application, 33
background selections, 33
color filters, 33
contextual support, 34
elementary school students, 33
legibility, 33
nonsense and real words, 33
standardized letters, 33
stimulus materials, 32
study learning, 34
typical classroom, 33

International Board for Training, Performance and Instruction (IBSTPI), 651
The International Society for Performance Improvement (ISPI), 116
International Society for Technology in Education (ISTE), 636, 651, 824, 828
and NALEA, 583
national visual arts standards, 583
International technology transfer (ITT), 632–633
Interpretive tradition, 176, 178
Ioannidou, A., 533
Jonas, L.G., 280
Irgens, E.J., 618, 619
ISD. See Instructional Systems Design (ISD)
ISD model. See Instructional Systems Development (ISD) model
Ishii, H., 688, 689, 704, 708
ISPI. See The International Society for Performance Improvement (ISPI)
Issacs, S., 884
Issenberg, S., 858
ISTE. See International Society for Technology in Education (ISTE)
Ito, M., 349
Ito, R.C., 832, 833
ITSS. See Intelligent tutoring systems (ITSSs)
Ivins, T.Z., 784
IWBS. See Interactive whiteboards (IWBs)

J
Jabri, M., 622
Jackson, G.T., 492, 763
Jackson, K., 222, 228, 229, 557
Jacobson, M.J., 471
Jacques, P.H., 404
Jadallah, M., 506, 507
Jahnke, I., 441
Jameson, A., 57
Jamison, D.T., 241
Januszewski, A., 375
Jehan, T., 704
Jenkins, H., 577
Jenkins, J.M., 92
Jenlink, P.M., 616
Jermann, P., 797–798
Jesiek, B.K., 567
Jia, B., 772
Jiang, L., 519, 521
jMAP, learners' representations, 290, 293, 294
Johansen, J., 782–784
John, J., 453
Johnson, D., 438
Johnson, L., 541
Johnson-Laird, P.N., 465, 466, 468, 470, 471, 475, 476
Johnson, M., 420
Johnson, R., 438
Johnson, S., 465
Johnson, T., 477
Johnston, L., 228, 229
Johnston, M., 168
Jonassen, D.H., 14, 46, 155, 268, 269, 278, 280, 284, 374, 375, 406, 474, 506, 511, 645, 771
Jones, G., 812
Jones, J.C., 610
Jones, S., 415
Jordan, C.M., 204
Jossberger, H., 362
Jukes, I., 827
Jurica, J., 577
Jutice, L.M., 506

K
Kabilan, M.K., 747, 750, 753
Kadah, M.M., 633
Kafai, Y.B., 730
Kahn, H., 277
Kahn, S., 729
Kali, Y., 510, 511
Kalk, D., 84, 257
Kalyuga, S., 497
Kalz, M., 783
Kamakura, W., 217
Kamill, M.L., 496
Kantor, R.J., 405
Kantor, R.J., 405
Kappelin, V., 153, 154
Karalahios, K., 797
Kara, N., 704, 705
Karatasavidis, I., 751
Kardash, C.M., 277
Karle, J.W., 487, 491
K-20 AR literature review
affordances, 737
design, 738–739
development platforms, 739–742
limitations, 737–738
Kato, P.M., 484, 488
Katsionis, G., 490
Kautman, R., 43, 116, 121, 123, 124
Kaye, D., 497
KCR. See Knowledge of correct response (KCR)
Kearney, W.S., 620
Keefe, J.W., 92
Ke, F., 488, 494
Keller, F.S., 424
Index

Keller, J.M., 70, 71
Kelle, U., 223
Kellogg, W.K., 251
Kelly, A.E., 552
Kelsey, K.D., 751
Kemmis, S., 163
Kennedy, G., 823
Kerawalla, L., 751
Kerr, S.T., 653, 899
Kershner, R., 439
Ketelhut, D.J., 529, 729
Khalfan, A., 354
Khandelwal, M., 694
Khan, F.A., 773
Kicken, W., 363, 366
Kilpatrick, H., 497
Kilpatrick, J., 552, 554
Kim, B., 104, 511, 708
Kim, C., 70, 71, 758, 763
Kincheloe, J., 164
Kindon, S., 167, 168
Kinesthetic learning
 colocated collaboration, 695
 learning experience, 695
 spatial memory, 695–696
King, C.G. Jr., 843
Kintsch, E., 290
Kintsch, W., 10
Kinzer, C.K., 400
Kirkley, J., 498
Kirkley, S.E., 498
Kirkpatrick, D.L., 859
Kirk, R., 251
Kirschner, P.A., 406, 497, 652, 795
Klahr, D., 452, 455
Kleinbölting, H., 472
Klein, G., 472
Klein, J.D., 85, 133, 143, 372
Klemes, J., 492
Klerx, J., 791
Klopfen, E., 137, 643
Kluger, A., 415
Knezek, G., 204, 207, 216, 828
Knott, G., 407
Knowledge-based design
 domain, 667
 learning and instruction, 667
Knowledge-based ITSs
 constraint-based tutors, 427
 description, 427
 example-tracing tutors, 427–428
 model-tracing cognitive tutors, 427
Knowledge diagnosis
 of mental models, 477
Knowledge of correct response (KCR), 36
Knowledge representation, model-based tools
 AKOVIJA (see Automated Knowledge Visualization and Assessment (AKOVIJA))
 ALA-reader (see ALA-reader, knowledge representation)
 analysis, 293
 artifacts, 293
 association and causality networks, 293
 automation, 295–296
 description, 287–288
 designing and development, learning environments, 287
 development, 293, 294
disconnection, research and tools development, 295, 296
exploration, 296
functions, 288
graphical forms, externalization, 288–289
hardware and software technology, 289
HIMATT (see Highly integrated model assessment technology and tools (HIMATT))
ICT, 287
implementation, 296–297
internal, 288, 289
interpretation, 289
jMAP, 290
open cross-validation, 296
outdated tools, 295
pathfinder, 289
properties and strengths, 293
quality, 296
requirements, 287
scientific quality, 293, 295
standard assessment, 289
testing, 295
triangulation, 297
types, 288
Knowles, M.S., 361, 363
Koedinger, K.R., 312, 428, 504, 809
Koehler, M.J., 102, 104, 105, 845, 910
Köhler, W., 465
Kohl, P.B., 809
Kolbek, K., 124
Kollöffel, B., 810
Kolodner, J.L., 506, 508
Koohang, A., 784
Kopcha, T.J., 843
Korat, O., 593, 715
Korn, R., 261
Ko, S., 261
Koszalka, T., 854
Kozlowski, S.W.J., 363
Kozma, R., 6, 811–812, 885, 889, 890
Kraiger, K., 40
Krajcik, J.S., 352, 452, 504, 512, 530
Krems, J., 477
Krippendorff, K., 376
Krueger, A.B., 240, 242
Krug, D.H., 584
Krug, R., 844
Kuhl, J., 469
Kuhn, D., 454, 455, 644
Kuhn, T.H., 23
Ku, H.Y., 354
Kulhavy, R., 414
Kumar, D., 250
Kumpulainen, K., 349
Kupitz, V.W., 145, 147
Kuutti, K., 153
Kuzma, J., 125
Kvavik, R.B., 821
Kwon, E.J., 833
Kwon, H.I., 268

L
Lacey, T.A., 831
Ladd, H.F., 841
Ladyshewsky, R.K., 747
Laffey, J.M., 375, 488, 492
Lagemann, E.C., 132, 163
Lajoie, S.P., 506
Lalingkar, A., 792
Lamb, A., 403
Lambur, M., 251
Lam, J., 418, 419
Lampert, M., 177
Lampert, N., 584
LAMS. See Learning activity management system (LAMS)
Lancaster, L.C., 818
Landry, S., 597
Land, S.M., 504, 518, 642, 645
Lane, A., 782, 784, 785
Lane, N.E., 305, 306
Lane, S., 620
Langdon, D., 43
Langley, A., 618
Lanzilotti, R., 492
Larivée, J., 519, 521
Larkin, J.H., 808
Larsen, A.K., 854
Larson, M.B., 652, 654
Lauber, B.A., 497
Laurel, B., 134, 726
Lavigne, N.C., 506
Lavy, J., 240, 242–243
Lawless, K.A., 596
Law, N., 884
Lawson, B., 655, 656
Lazarinis, F., 426
Lazonder, A.W., 452
LB. See Location-based (LB)
Learner agency, 413
Learner modeling research. See User modeling (UM)
Learning
culture (see Culture in learning), 59
emotion and affect, 59
intentional, 78
micro/macro-learning activities, 79
new trends, 85
personal and covert cognitive activity, 79
unintentional, 78
Learning ability
advisory models, 365–366
construction, 362
description, 368
FLEs (see Flexible learning environments (FLEs))
SDL (see Self-direct learning (SDL))
SRL (see Self-regulated learning (SRL))
Learning activity management system (LAMS), 912
Learning analytics
tracking and analysis, activities, 798
visualization techniques, 800
Learning design
activities, 789
analysis phase, instructional design, 800
applications, 792
bubble sort algorithm, 794
CompendiumLD, 801
design phase, 801
educational resources, 791, 792
evaluation studies, 800
GISMO system, 798
hierarchical classification, 791
learner model, 799
learning effects, 798
line chart, 799
London Pedagogy Planner, 801
LORs, 791
Mendeleev’s periodic table, elements, 793
Open Graphical Learning Modeler, 801, 802
pedagogical approaches, 794
self-assessment tools, 799
self-reflection and awareness, 798
social network analysis, 792, 796
visualization techniques, 795
Learning environment
ASPIRE, 457–458
description, 456
evolution readiness, 456–457
SCY project (see Science created by you (SCY) project)
Learning management systems (LMSs), 146, 326, 769
Learning object repositories (LORs), 791
Learning opportunity, support devices
compensating, 518–519
inducing, 519
scaffolding, 519
Learning styles
accuracy, identification approaches, 771
Bayesian networks, 771
definitions, 771
learning style models, 772
mouse movement patterns, 772
Learning technology, 840, 841
Learning theories
audiovisual movement, 4
back-to-basics movement, 4
behavioral learning theory, 4
behaviorist, findings and principles, 12–13
CAI, 4–5
cognitivist, findings and principles, 13
commercial organizations, 5
education, cognitive orientation, 5
evolutions, 5
expectations function, 4
intensive electronic networking and social media, 5
intrinsic limitations, educational research, 5
noncumulative characteristics, 12
permanent changes, 5
PLATO, 7
pragmatic position, 5
program computers, 5
schools and educational institutions, 5
science and technology, 5
socio-constructivist, findings and principles, 14–15
and technological tools, 9
and technology, 6–7, 15
Zeitgeist, 4
Learning through collaboration (LtC)
affordance and desired learning, 753
knowledge and affective nature of writing, 752–753
knowledge construction and meaning negotiation, 751–752
learning space, 754
microblogging, 753–754
mobile Web 2.0, 753
shared goals, 752
social and work space, 753
video editing and production, 754
LeCompte, M.D., 222
Lee, C.B., 375
Lee, C.D., 352
Leech, N.L., 184
Lee, C.-S., 792
Lee, H., 506, 509
Lee, M.-D., 491
Lee, R.L., 540
Lee, V.R., 808
Lee, Y., 288
Lehman, S., 389
Leinonen, T., 506
Leontev, A.N., 152
Lepper, M.R., 497, 706–708, 726
Lesh, D., 553
Lesh, R., 465, 478, 552
Lesson planning
 autoethnography, 896
design-based, 896
discourse analysis, 895
Hunter method, 894
interpretive and cognitive shift, 895
late 1970s, 894
prescriptive theory, 896
process–product research foundations, 894–895
programs, 1990s, 894
reexamination, 896
1960s, 894
Lester, H.A., 491
Lester, P.M., 830
Leutner, D., 488, 491, 497
Levels of teaching innovation (LoTi), 840
Levie, W.H., 372, 375
Levin, D.E., 701
Levine-Clark, M., 718
Levin, H.M., 237, 242, 495
Levin, J.R., 386
Levstik, C.A., 571
Levy, B., 591
Levy, S.T., 531
Lewins, A., 222, 223
Lewis, S., 441
Lewithwaite, B., 353
Li, D.D., 506, 510
Light, D., 889
Lim, C.P., 156, 158, 506, 715
Lim, O., 203
Lincoln, Y.S., 138, 174, 175, 185, 222
Lindem, L., 240–242
Lindner, J.R., 493
Lindsay, J., 643
Lin, H., 751, 843
Linn, M.C., 504, 506, 510, 511, 535
Lin, P.H., 581
Lin, T., 772
Lipka, J., 351
Lipsey, M.W., 251, 495
Li, S.C., 847
Li, T., 634, 635
Liu, C., 809
Liu, M., 506, 519, 708
Liu, O.L., 506
Liu, T.-C., 771, 772
Liu, X., 354, 530
LMSs. See Learning management systems (LMSs)
Loacker, G., 419
Locascio, D., 576
Location-based (LB)
description, 740
Hoppola Augmentation, 741
relative proximity, 740
7Scenes, 741
TaleBlazer, 741
Lockee, B.B., 654
Lodree, A., 492
Loftland, J., 222
Logic model and program/project evaluation
 assessment, 196–197
 formative, 197–198
 implementation and impacts, 196, 197
 obligation, elevators, 197
 research, educational technology, 196
 responsibility, 197
 summative evaluation, 196, 198
Lohr, D., 497
Loizou, A.T., 809
Lomax, R., 209
Lorch, R.F., 455
LORs. See Learning object repositories (LORs)
LoTi. See Levels of teaching innovation (LoTi)
Louwerse, M.M., 763
LiC. See Learning through collaboration (LiC)
Luchins, A.S., 23
Luckin, R., 753
Luehmann, A.L., 746–748, 751
Luehmann, E.C., 895
Luigi, D.-P., 405
Lukacs, K., 620
Lume, J.J., 262
Lund, K., 440
Luppicini, R., 377
Lynch, P.J., 493
Lynch, S., 352
Lysne, K., 585
Lytle, S.L., 162–164, 166, 169
M
Mabbott, A., 426
Macaruso, P., 593
MacBride, R., 747, 748
Macdonald, R.J., 842
Macfarlane-Dick, D., 415
Macgregor, S.K., 843
MacKin, S., 240
MacKenzie, N., 779
MacLean, M.S., 164, 166
Maddux, C.D., 186
Mager, R.F., 40, 42
Magjuka, R.J., 354
Ma, H., 844
Maietta, R., 223
Malhotra, B.A., 451, 454, 456
Maloch, B., 506
Malone, T.W., 497, 706–708
Maloney, D.P., 271
Mandl, H., 444, 522
Marek, P., 520
Margaryan, A., 155
Marisisske, M., 268
Marker, A., 43
Markle, D., 609
Markle, S.M., 78, 608
Index

Markman, A.B., 465
Marmarelli, T., 716
Marshall, G., 830
Marshall, S., 847
Marsh, J., 341
Martin, B., 426, 897
Martin, C.A., 818
Martin, J., 46
Martín, S., 774
Masnick, A.M., 454
Massive multiplayer online (MMO), 722
Massive Open Online Courses (MOOC's), 796
Mastumoto, D., 347
Mathematics education
 anthropological and psychological, 350
 and China, 350
 coherent and comprehensive picture, 552
 culture and learning, 350
 “declarations of independence”, 551–552
design experiments, 559
domain-independent theories, 551
enrichment, methodologies, 552–553
 as field, 552
 Homegrown theories (see Homegrown theories)
 learner’s cognitive abilities, 350
 length restrictions, 558
 outcomes data, learning, 350
 researchers and scholars, 551
 reviews, 350–351
 specificity and integrity, 558
Mather, R., 404
Maton, K., 823
Mauri, T., 442
Maxwell, J.A., 222
Mayer, R.E., 375, 376, 387, 390, 475, 489, 491, 497, 910
Mayes, J., 909, 912, 914
Mayeske, G., 251
Mayher, J.S., 166
Mazalek, A., 694
Mazza, R., 798
MBI. See Modeling-based instruction (MBI)
McAndrew, P., 784
McCaslin, M., 644
McClelland, J.L., 466, 467
McCracken, W.M., 656
McCrudden, M.T., 389
McCutcheon, G., 895
McDonald, J.K., 6
McDougall, D., 354
McEwan, P.J., 237, 495
McGaghie, W.C., 857
McGee, J., 858, 859
McGee, S., 268
McGonigal, J., 483
McGraw, T., 584
McGregor, H.A., 521
McKenney, S.E., 134, 135
McKenny, S.E., 250
McLaughlin, L., 619
McNamara, D., 492
McNeill, D., 442
McNeill, K.L., 512
McNiff, J., 165, 167
McShay, J., 865–867
McTaggart, R., 163, 167
McVee, M.B., 703
Meaney, T., 351
Means, B., 341
Media arts, scholars, 582
Medical education
 conceptual thoughts, 857
description, 854
 educational technology articles classification, 2011 medical
 journals, 855, 856
 infrastructure literature, 858–859
 medical education library databases, 856
 open internet searches, 856
 research, educational technology uses and impact, 860
 scholarship, 854
 semantic networking tools, 857
 simulation, 855
 social media technologies, 857
 social sciences domains, 854
 support mechanism literature, 859
technology resources, 859–860
 themes, conceptual thoughts and research, 860–861
Medical school reform
 adoption studies, 862
 broad understanding, 862
 educational technologies, 855
 educational technology in medical education, 855–861
 EMR, 854
 medical education, 854
 methodology, validation and measurement, 862
 mindset, 861
 preparing medical students, medical practice, 855
 readiness, 861
 support, 861
technology integration, 861–862
Megowan-Romanowicz, C., 533, 812
Meister, G.R., 242
Meltzer, D.E., 808
Mendels, P., 704
Menon, V., 58
Mental models
 and accommodation, 468
 and assimilation, 467–468
 characteristics, 468
 cognitive functions of, 468
 pragmatic conceptions, 468
 Mental representation
 children with advanced motor skills, 682
 cognition and restriction of learning, 14
 problem solving, 807
 schemas and coherent mental models, 464
Mercer, N., 439
Merriam, S.B., 182, 184
Merrienneboer, J., 404
Merrill, D., 704
Merrill, M.D., 14, 43, 90, 522, 544, 545, 644
Merrill, M.M., 497
Mertzman, T., 506
Message. See Instructional message design
Mestre, J., 271
Metacognition, support device usage, 520
Meyer, B.J.F., 594
Meyers, N., 404
Michinov, E., 440
Michinov, N., 440
Miclea, M., 152
Microsoft Space Telescope project, 216
Model-based reasoning
 analogy models, 477
cognitive operations, 466
Model-based teaching, mathematics and science education, 470
Model-based thinking
 computational habit-of-mind, 531, 532
 qualitative and quantitative modeling, 530
 system thinking (see System thinking)
 TMBI environments, 530
Modeling and reciprocal emotions
 accommodation and assimilation, 470
 applications, model-based learning, 470
 assimilation resistance, 469
cognitive aspects, 469
cognitive theory, affect, 469
degrees, incongruity, 469
epistemic curiosity and stimulus seeking, 469
 mood repair hypothesis, 470
 performance, 469–470
 positive and negative state, 470
 state emotions, 469
Modeling-based instruction (MBI)
 collaborative learning, 533
description, 527
 features, 527–528
 in physics education, 530
 traditional learning environments, 528
Moersch, C., 840
Mohan, L., 506
Mohr, M., 164, 166
Molecular Workbench model, electron transport chain, 531, 532
Molenda, M., 40, 374, 375
Molloy, E., 418
Montgomery, K.C., 574
Molteno, R., 488, 491, 492, 497, 762, 765, 809
Morris B.A., 405
Morris, B.J., 454
Morrison, G.R., 35, 43, 165
Morrison, H.C., 606
Moser Opitz, E., 555
Moses, A.R., 626
Motivation and emotions
 cognitive and physiological, 65–66
cognitive processes and strategies, 66–67
decision making, 67
description, 67–68
energy and matter, physics, 66
learning and performance, 66
mastery goal orientation, 66
reciprocal effects, 68
research, 65
students, 65
Motivation, support device usage, 520–521
Motivation to learn, 72
Mruck, K., 223
Muijs, D., 489
Mulder, F., 780
Mulder, Y.G., 452, 453
Müller, G.N., 555
Multicultural education

digital learning systems, 866
emerging hardware technologies in digital education, 867
multicultural learners in electronic education, 866
pedagogical frameworks, 865
software paradigms in digital education, 867–868
technological learning solution, 866

Multicultural learning

electronic education, 866
social media, 867

Multimedia instruction

annotated diagram, car’s braking system, 383, 384
boundary conditions, 394
cognitive theory, 386
communication, engineers and investors/artisans, 385
computer-based, 386
description, 383
in educational films, 385
evidence-based principles, 384
fostering, generative processing (see Generative processing)
instructional goals, 388, 393
learning, printed words and illustrations, 385
Orbis Pictus, 385
Paivio’s dual coding theory and preliminary design principles, 386
phases, history, 384
principle, 383
reducing, extraneous processing (see Extraneous processing)
research-based theory, 393
science of learning (see Science of learning, multimedia instruction)
slides, narrated animation of car’s braking system, 383–385
sources, research evidence, 388
on verbal media, 384

Multimedia learning

cognitive theory, 386, 387
essential overload situation, 387–388
essential processing, 387
extraneous overload situation, 387, 388
generative processing, 387
generative underuse situation, 388
instructional designers, 387
three demands, learner’s cognitive capacity during learning, 387

Multiple intelligence (MI) theory, 146

Multiple source comprehension

analysis and synthesis, 596
satisficers and selectors, 597
selecting sources assessment, 596
subject-matter, 596

Multiuser virtual environment, 93

N

Nadolski, R.J., 367
NAE. See National Academy of Engineering (NAE)
Naps, T.L., 795
Nardi, B., 153, 154
Nariani, R., 714–716

Nasir, N.S., 351
Nass, C., 758
Nathan, M.J., 809
National Academy of Engineering (NAE), 680
National Council for the Social Studies (NCSS), 571–572
National Educational Technology Plan (NETP)
education professionals, 590
global society, 595
National Educational Technology Standards for Students (NETS-S), 583

Natural user interface

new systems, 688
standard conventions and guidelines, 688
NCSS. See National Council for the Social Studies (NCSS)
Needs assessment, program and project evaluation, 196–198
Nelson, B.C., 729
Nelson, D.W., 288
Nelson, M., 619
NetLogo model, global warming, 531, 532
NETP. See National Educational Technology Plan (NETP)
NETS-S. See National Educational Technology Standards for Students (NETS-S)

Networked learning, CSCL, 438

Networking and Information Technology Research and Development (NITRD), 636

Neuroimaging

CLT (see Cognitive load theory (CLT))
cognitive function, 51
critical periods”, 52
direct translation, research, 61
education and behavioral sciences, 52
educators, 60
epidemiology and actual practice, health care, 60
language and the “reading brain”
classic debates, literacy research and education focuses, 56
complementary pathways, 56
cytoarchitectural organization, 54, 55
description, 54
dual-route framework, 56
English readers, 55–56
ERP and fMRI, 54
Italian language, 55
learning, 54
occipital-temporal areas, 54
orthographic depth hypothesis, 56
real interdisciplinary research, 61
substantial government investments, 51–52
synapses, 51

Nederbragt, W.F., 286

Neuroscientists examine cognitive functions, 60

Neurotechnologies

brain’s electrical activity, 54
cerebral blood flow, changes, 52
cerebral activity, 54
chemical and electrical neural activity, 52
cognitive neuroscience, 54
EEG and ERP’s (see Electroencephalography (EEG))
empirical research, 52
fMRI (see Functional magnetic resonance imaging (fMRI))
fNIRS (see Functional near-infrared spectroscopy (fNIRS))
physiological responses, 52
state-of-the-art research, 54

Neri, G., 155

Nesbit, E.M., 809

NetLogo model, global warming, 531, 532

Networked learning, CSCL, 438

Networking and Information Technology Research and Development (NITRD), 636

Neuroimaging

CLT (see Cognitive load theory (CLT))
cognitive function, 51
critical periods”, 52
direct translation, research, 61
education and behavioral sciences, 52
educators, 60
epidemiology and actual practice, health care, 60
language and the “reading brain”
classic debates, literacy research and education focuses, 56
complementary pathways, 56
cytoarchitectural organization, 54, 55
description, 54
dual-route framework, 56
English readers, 55–56
ERP and fMRI, 54
Italian language, 55
learning, 54
occipital-temporal areas, 54
orthographic depth hypothesis, 56
real interdisciplinary research, 61
substantial government investments, 51–52
synapses, 51

Nederbragt, W.F., 286

Neuroscientists examine cognitive functions, 60

Neurotechnologies

brain’s electrical activity, 54
cerebral blood flow, changes, 52
cerebral activity, 54
chemical and electrical neural activity, 52
cognitive neuroscience, 54
EEG and ERP’s (see Electroencephalography (EEG))
empirical research, 52
fMRI (see Functional magnetic resonance imaging (fMRI))
fNIRS (see Functional near-infrared spectroscopy (fNIRS))
physiological responses, 52
state-of-the-art research, 54

Neri, G., 155
Neuroscience
 basic assumption, 52
 cognitive, 54, 57
 cognitive, affective and social, 60
 "critical periods", 52
 direct translation, 61
 and education, 61
 educational, 59
 educators, 60
 empirical research, 52
 implications, 60
 membership, 52
 tasks, 59
 "working memory load", 58
Newby, T.J., 14
Newmann, F.M., 403
Newstetter, W., 656
Ng, S., 350
Nguyen, Q.T., 166
Nicholls, J., 747, 748
Nicol, D., 415
Nielsen, H.D., 243
Nielsen, J., 910
Nieveen, N., 144
Nigam, M., 452
Nisbett, R.E., 471
NITRD. See Networking and Information Technology Research and Development (NITRD)
Ni, Y., 350
Njoo, M., 453, 455
Nolffke, S.E., 164
Non-scaffolding instructional support
 domain-specific knowledge, 512
 dynamic assessment and fading, 511–512
Norhaidah, S., 353
Norman, D.A., 226, 473, 808
Norman, H., 109
Norris, S.P., 278
Norton, P., 893
Nulty, D., 404
Nussbaum, E.M., 277

O
Oblinger, D., 818, 821
Oblinger, J., 818
OCR. See Optical character reader (OCR)
OCW. See Open courseware (OCW)
O’Donnell, C., 251
OER. See Open educational resources (OER)
Ofeish, G.D., 608
Oh, E., 137, 403, 404, 818
Oh, S., 506
Okagaki, L., 497
Oliver, K., 504, 518
Oliver, R., 400
O’Loughlin, M., 454
OLPC. See One Laptop per Child program (OLPC)
Olson, B., 860
Olympiou, G., 812
O’Neil, H.F., 492, 497
One Laptop per Child program (OLPC), 883–884, 888
One-to-one scaffolding
 definition, 505–506
 in elementary schools
 instruction, various subjects, 507
 reading instruction, 506
 intersubjectivity and customization, 507
 in middle school, various subjects instruction, 507
 transfer of responsibility, 507
Online testing, ICT
 CAT, 327
 description, 327
 environment, 327
 ETS, 329
 management module, 327, 328
 new techniques, 327
 sequence actions, 327
 testing module, 327, 328
 vendors management, 329
Onwuegbuzie, A.J., 184
Open courseware (OCW), 781
Open educational resources (OER)
 commons-based peer production, 782
 course development process, 782
 creative licenses, 780–781
 definition, 779–780
 discovery problem, 783
 educational research, 785
 educational technology, 785
 financial benefits, 783
 institutional production, 782
 localization, 784
 nations and states, 785
 policy, 781
 quality problem, 784
 remix, 785
 structure, 783
 sustainability, 783–784
Open learning environments. See Student-centered learning
Optical character reader (OCR), 202
Orbis Pictus, multimedia instruction, 385
Organizational change
 funneling process, 621
 sequential projects, 618
 shape and implement change, 621
Organization for Economic Cooperation and Development (OECD), 830
Ortega, J., 204
Ortony, A., 270
Osgood, R.E., 405
Osguthorpe, R.T., 657
Oswald, S., 484
Ottenbreit-Leftwich, A.T., 845
Over, D.E., 471
Ozdemir, G., 353
Ozgun-Koca, S.A., 104
Özpolat, E., 771

P
Paavola, S., 441
Pai, A., 386
Palak, D., 845
Palinscar, A.S., 506, 508
Pallant, A., 533
Paloff, R.M., 261
Pane, J.F., 341
Pangaro, P., 377
Papaevripidou, M., 531
Papert, S., 11, 583, 584, 877
Paquette, G., 663
PAR. See Participatory action research (PAR)
Paredes, P., 772
Participation, CSCL
and acquisition metaphors, 441
collaborative activity, 443
and interactive multiway communication, 441
social view of learning, 441
Web 2.0 technologies, 441
Participatory action research (PAR), 167
Participatory geographic information system (PGIS), 169
Pask, G., 377
Pathfinder, 289, 293, 294
Patricia, C., 780
Patruss, M., 828
Pattn, M.Q., 222, 248, 249, 909
Paulson, A., 528
Pea, R.D., 511
Pedagogical agents
adaptability and versatility, 759–760
anthropomorphous virtual characters, 757
CASA, 758
CLT, 759
cognitive and sociocultural foci, 763
communicative relationship, 761
description, 757
development, 758
digital environments, 764
educational psychology literature, 765
empirical research, 763
learner’s sociocultural needs, 760–761
learning and performance, 762–763
methodological focus, 763–764
persona effect, 761–762
realistic simulations, 760
social-cognitive theories, 758–759
student-centered inquiry, 764
verbal communication, 762
Pedagogical content knowledge (PCK)
description, 102
development, 107–108
ePCK, 103
ICT-related, 102–103
TPACK, 106–107
TPCK-W, 103–104
Pedersen, S., 506
Peer scaffolding
definition, 507
in elementary school, science instruction, 507–508
intersubjectivity, customization and transfer of responsibility, 508
in middle school
reading instruction, 508
science instruction, 508
in universities, 508
Peeters, B., 223
Peel, J., 784
Pettee, C.S., 465
Pekrun, R., 68, 69, 71, 469
Pentimonti, J.M., 506
Pepler, K., 582
70 Percent Rule, CTA
automated and nonconscious procedures, 543
healthcare “experts”, 542
percent of knowledge, individual interviews, 543
percent of OC steps, trauma experts, 543
practitioners, 543
trauma procedures, 542
Performance appraisal, 302
Performance assessment
alternative, 302
appraisal, 302
authentic, 302
classrooms, 303
complex and ill-structured, 306–307
description, 307
designed tests, 303
design strategies, 307
eyearly China, 301
education, 301
France and Italy, 301–302
knowledge and skill, 303
least 1950s, 302
measurement, 301
modern standards, 302–303
objective, 303
observations, 303
portfolio, 302
professional guidance, 303
rating techniques, 303
reliable and valid, 303
research and development, 306
simulation-based (see Simulation-based performance assessment)
since 1960s, 302
task, 302
Performance-based training, 47
Performance evaluation, 302
Performance task, 302
Periaithiruvadi, S., 203
Perkins, D.N., 518, 519, 522
Perkins, K.K., 528
Perry, A., 715
Persico, D., 443
Personalized instruction
computer software, 845–846
educational software, 845
intelligent tutoring systems, 846
Personalized learning
adaptive and intelligent technologies, 424
AI (see Artificial intelligence (AI))
description, 424
EDM (see Educational data mining (EDM))
four-dimensional perspective, adaptive learning, 430, 431
structure, environment, 424
UM (see User modeling (UM))
Pettersson, E., 706, 707
Petraglia, J., 405
Petrides, L., 785
Pfaffengerber, B., 222
Pfaffman, J.A., 753
Pfeifer, M., 205
PGIS. See Participatory geographic information system (PGIS)
Phelps, C.L., 859
Phenomenology
aims, 880
Cartesian dualism, 880
educational technology, 880
inquiry, 880
methodology, 880
novice computer users, 880
researchers, 880–881
Index

Philip, R., 747, 748
Phillips, J.J., 495
Philosophy of science
characteristics, 876
constructivist epistemology, 877–879
description, 874
educational technology research, 873
phenomenology, 879–881
postpositivist science, 875–876
research, 874–875
scientific inquiry, 876
structure, 873–874
Phyfe, L., 168
Piaget, J., 4, 26, 28, 90, 467, 705–706, 708
Piele, P.K., 495
Pink, D.H., 92, 96
Pinkwart, N., 854
Pintrich, P.R., 520
Pipe, P., 40, 42
Piper, B., 704, 708
Pirnay-Dummer, P., 879
Plano Clark, V.L., 222
Plantamura, P., 492
PLATO. See Programmed logic for automatic teaching operation
(PLATO)
Plomp, T., 115, 885
Podolefsky, N.S., 528
Poldoja, H., 854
Policy sociology, 909
Pollock, B.H., 484
Pomportis, A., 425
Ponserre, S., 497
Poole, G., 859
Popper, K., 875
Portable network graphics (PNG), 291
Portfolio assessment, 302
Postpositivist science
claim, 876
elements, 875
hypotheses, 875, 876
inquiry, 875–876
representation, 876
Potters, J., 487, 497
Powell, D.R., 597
Power, M., 896
Pozzi, F., 443
Pratt, K., 261
Precedent
episodic memory, 654
knowledge, 654
Preckel, F., 469
Prensky, M., 820, 822
Preservice teachers
classic ID models, 900
classroom and instruction, 901
instructional design, 897, 899
lesson plans, 896
novice–expert studies, 896
online learning, 899, 900
pedagogical knowledge, 897
Preskill, H., 261
Presmeg, N., 794
Pressley, M., 506
Price, S., 439, 702
Prinz, W., 466
Pritchard, R., 415
Problem-based learning (PBL), 93
epistemological variants, 639
and IL, 644
Problem-solving
adaptive representations, 810–811
assessment methods (see Assessment)
cognitive activities, 268
complexity, 269
and discovery learning, classroom, 478
3D representations, 811–812
dynamic representations, 811
external representation, 808
format, external representation, 808–809
human skills, 807
internal problem representation, 807
multiple connected representations, 810
process/activity, 267
reiﬁed objects, 812
and representations, 807–808
situation, 268
structuredness, 268
tasks, complex systems, 478
technological environments, 812
well-structured, 268
workplace engineering, 268
Problem-solving learning environments (PSLEs), 277
Problem types. See Assessment
Professional development
accumulating evidence, 599
in-service, 106, 107, 109
internet-based reading, 598
language and literacy development, 590–591
multiple source comprehension (see Multiple source
comprehension)
national evaluation study, 599
pre-service, 106, 109
research, 102
students (see Students, professional development)
teacher education and teacher, 106
teacher learning and effective practice, 597–598
technological content knowledge, 103
technologies, support students, 589–590
technology and assessment (see Assessment)
Professional ethics
application, 121
current literature, 118
primary informant, 124
Program and project evaluation
assessment, 197–198
confi rmatory, 195–196
description, 193–194
district leadership, 197
educational innovations, 194–195
evaluation vs. research, 197
implementation, 198
logic models (see Logic model and program/project
evaluation)
recommendation and training, evaluator, 198
representation, 195
research, instruction and learning technology, 194
student risk, 197
theory of change, 198
Reasoning models
construction, mental models, 471
deductive, 471
domains, 472
inductive, 471–472
internal analogous representation, 471
probabilistic mental models, 472
semantic/pragmatic approaches, 471
structural similarities, 471

Rebertson, I., 752
Recognition primed decision (RPD) model, 472
Reeves, B., 758
Reeves, D.B., 338, 339
Reeves, P.M., 402
Reeves, T.C., 14, 131, 134, 135, 155, 249, 250, 400, 402, 708, 818
Reid-Griffin, A., 899
Reigeluth, C.M., 22
Reimann, P., 442, 443
Reimers, S., 472
Reinking, D., 135
Reiser, B.J., 505, 506, 511
Reiser, R.A., 80, 898
Reisslein, J., 440
Reisslein, M., 440
Reis, S.M., 403
Remix, 785
Renkl, A., 521
Renshaw, P., 349
Renzulli, J.S., 403

Representation technologies. See Problem-solving
Research
based instructional perspectives
AUC, 36
AVCR, 31
ETR&D, 31–32
external validity (see External validity)
feedback study, 36
instructional technology research, 32
internal validity (see Internal validity)
KCR, 36
participants, 36
performance incentive, 36
primary incentive, participants, 37
readers, 32
stimulus materials, 32, 36, 37
change
agency
communication, 621–622
leadership, change, 618–620
visual arts education
categories, 586
compendia, 587
electronic technologies, 586
NAEAs committee, 586

Research funding
ARPA-ED, 629
EETT/Ed-Tech, 626
K-12 educational technology, 627

Research methods, ICT. See Information and communication technologies (ICTs)
Research paradigms, 874, 881
different paradigms and perspectives, 28
educational researchers, 28
insight and understanding, 27
instructional theories
design theories, 22
distinction, 22
educational research, 23
inquiry methods, 22
and learning processes, 22
‘prescriptive’ theories, 22
learners, 28
learning, 21–22
Merrill’s work, 28
methods and outcomes, relations, 27
and perspectives on learning
behaviorism and neo-behaviorism, 23–24
cognitive resource theories, 26
cultural-historical theory, 24–25
developmental psychology, 24
gestalt psychology, 23
information processing theories, 25
prevailing paradigms, 23
reconciliation, 23
scientific revolutions, 23
social constructivist theories, 27
symbolic cognitive theories, 25–26
Piaget’s developmental psychology, 28
researchers, open mind, 28
researchers working, 27
sound research, 27
Research quality, terminology
case study (see Case study, qualitative research)
classification, 176
definition, 174
educational studies and ECT, 175–176
naturalistic settings, 174
qualitative analysis, 174
vs. quantitative research, 175
Resnick, B., 251
Resnick, L., 400
Resnick, M., 702
Ressler, W., 643
Resta, P., 828
Retalis, S., 426
Return on investment (ROI), 495
Reuse
pedagogical and design assumptions, 785
types, 785
Rezmovic, E., 251
Rheingold, H., 824
Ribble, M.S., 824
Richards, L., 221, 223
Richardson, J.C., 506
Richards, S., 166
Richards, T., 221
Rich environment for active learning (REAL), 93
Richer, R.A., 376
Richey, R.C., 85, 89, 133, 372
Rick, J., 691
Rieber, L.P., 404, 497, 655
Rimm-Kaufman, S.E., 896
Ringle, M., 716
Riordan, T., 419
Rivet, A.E., 352
Roberts, S., 119
Robinson, D.G., 47
Robinson, J.C., 47
Robinson, R.S., 161
Roblyer, M.D., 585, 909
Robottom, I., 353
Robson, R., 663
Rockley, A., 712
Rodrigo, M.M.T., 489, 494
Rodríguez, M., 783
Rodríguez, P., 772
Roe, K., 489, 493
Rog, D.J., 248
Rogers, E.M., 616, 617
Rogers, P.C., 377
Rogers, Y., 702
Rogoff, B., 348
Rohrer-Murphy, L., 155, 417
ROI. See Return on investment (ROI)
Romero, C., 429, 430
Romiszowski, A.J., 84
Ronen, M., 489, 494
Rosa, R., 889
Rose, E., 898
Roselli, T., 492
Rosenberg, M.J., 42
Rosenfeld, S., 257
Rosenquest, B., 701
Ross, G., 503, 504
Ross, J.A., 495
Ross, S.M., 35, 44, 151, 155, 165, 243, 244
Roth, P., 415
Rouse, C.E., 240, 242
Roussou, M., 702
Rowland, G., 376
Roytek, M.A., 146
RPD. See Recognition primed decision (RPD) model
Rubens, W., 506
Ruble, J., 585
Rubrics, problem solving assessment
argumentation
ability, 277
coding, student interaction, 279, 280
objective forms, 280
reading and evaluation, students’ essays, 278
student, 277–278
mental simulations, 277
performance construction
determination, 275–276
elements, 274
formula, 274
instructional and assessment function, 274
interactions, 276
material properties, 276
material selection, 276
physics, 274–275
policy analysis, 276–277
relationships, 274
students, 275
skills and activities, 279
Rudnick, M., 251
Rueda, S.M., 486
Ruiz, J.G., 859
Rule, A., 403
Rumble, G., 238, 241, 244, 779
Rumelhart, D.E., 270, 466–468, 473
Rummeler, G.A., 40, 43
Russ-Eft, D., 261
Russell, J., 811–812
Russell, M., 243, 244
Russell, T., 910
Ryan, A.M., 520
Ryle, G., 15
Ryokai, K., 703, 706, 707
Ryon, E., 442
Ryu, J., 762
S
Saab, N., 506
Sadler, D., 415, 416, 419, 420
Saettler, L.P., 372, 911, 914
Saganti-Nejad, T., 632
Sahin, L., 105
Sahiri, M., 143, 147, 149
Sainsbury, M., 596
Sakdavong, J.-C., 520
Salomon, G., 222
Salter, D., 418, 419
Salvende, G., 543
Salvendy, G., 543
Sancho-Vinuesa, T., 244
Sandars, J., 857
Sandoval, W.A., 506
Sangra, A., 847
Santiago, A., 890
Santoro, L., 593
SAS. See Statistical analysis system (SAS)
Savelsbergh, E.R., 530
Savenny, W.C., 161, 260, 261
Savery, J.R., 404, 405
Saye, J.W., 107, 506
Scaffolding, inquiry learning
evidence evaluation, 456
experimentation, 455–456
hypothesis generation, 455
Scaffolding support devices, 519
Scardamalia, M., 441
Schauble, L., 453
Scheirer, M., 251
Scheiter, K., 811
Scheuren, F., 261
Schiaffino, S., 426, 771
Schmid, R.F., 239
Schmidt, D.A., 105
Schneider, B., 251
Schneider, W., 540
Schmotz, W., 518, 521
Schoch, H.P., 714
Schoenfeld, A.H., 131
Schonau, D., 586
Schön, D.A., 163, 611, 655, 896
Schools, desktop manufacturing
3D printing, 677
fabrication hardware, 678
fabrication software, 678–680
Schramm, C.E., 373
Schraw, G., 389
Schrire, S., 442
Schultheis, H., 57
Schulze, S., 453
Schulz-Zander, R., 205
Schutz, P., 70, 71
Schwandt, T.A., 229
Schwartz, D.L., 808
Science

agency, 352
analysis, culture and learning, 351
equity, 351–352
identity, 352
international studies, 352–353
worldviews, 353

Science created by you (SCY) project, 458–459

Science education. See Technology-enhanced, modeling-based instruction (TMBI)

Science of learning, multimedia instruction
cognitive theory, multimedia, 386
human information processing system, 386
learner, message, 386
learner’s motivation, 387
learning (see Multimedia learning)
organizing images, pictorial model, 386–387
organizing words, verbal model, 386

Science, Technology and Society (STS), 122, 123

Science, technology, engineering, and math (STEM), 133, 582
equity, 351–352

Scientific Discovery as Dual Search (SDDS) model, 452

Scientific inquiry
constructivist epistemology, 879
phenomenology, 880
philosophy, 876
postpositivist, 875–876

Scientific reasoning, inquiry learning
evidence evaluation, 454–455
experimentation, 453–454
hypothesis generation, 453
SDDS model, 452

SCOLEs. See Student-centered, open learning environments (SCOLEs)

SCOT. See Social construction of technology (SCOT)

Scott, G., 495

Scriven, C., 262

Scriven, M., 249

SCY. See Science created by you (SCY) project

SDDS. See Scientific Discovery as Dual Search (SDDS) model

SDL. See Self-direct learning (SDL)

Seearson, M., 828

Seeling, P., 440

Seel, J., 429

Self-regulated learning (SRL)
ability, 362–363

and FLEs
feedback, 368
instructional interventions, 367
modeling, 367–368
process worksheets, 367
prompts, 367
skills, 368

Self-regulation
feedback, learning, 414

and self-monitoring, 419, 420

Selter, C., 555

Senge, P.M., 336, 478, 618

Serigo, T.J., 336

Serious games, taxonomy, 496

SES. See Socio-economic status (SES)

Sfard, A., 441

Sfiri, A., 754

Shadish, W., 248, 251, 252

Shager, E.J., 166

Shannon, C.E., 374, 376

Shapira, P., 251

Shapley, K.S., 841, 847

Sharma, P., 747

Shattuck, J., 250

Shavelson, R.J., 895

Shedden, J.M., 491

Shelburne, W.A., 714

Shen, J., 535

Shen, M.H., 809

Shepard, L., 260

Shepperd, J.A., 715

Shermis, M.D., 258, 260, 261

Sheroff, D.J., 485

Sherwood, R.D., 400

Shiffrin, R.M., 374, 540

Shinkfield, A., 249

Shoffner, M., 747

Shulman, L.E., 102–104

Shulman, L.S., 896

Shumacker, R., 209

Shute, V.J., 260, 415, 426, 427, 495

Siegel, M., 653

Siemens, G., 725

Sierpinska, A., 552

Silk, E.M., 675

Silver, C., 222, 223

Silverman, D., 180

Silverman, L.K., 771–773

Silverman, L.C., 79

Silver, C., 222, 223

Silverman, L.K., 771–773

Silverman, L.C., 79

Simon, H.A., 808

Simmonson, M., 258

Simons, R., 506

Simpson, G., 533

Simpson, J.R., 59

Sims, V.K., 489, 491, 497

Simulation-based performance assessment
advantage, 305
completeness, 306
computing technologies, 304
description, 304
development, 304
diagnosticity, 306
digital simulators, 305

Seel, N.M., 79, 287, 288, 467, 471, 474, 476, 477

Seels, B., 89

Selin-Green, J., 256

Self-direct learning (SDL)
and FLEs
assessment, 364
components, 364
design, 364
guiding, 364
implementation, ISDL model, 364–365
learning tasks, metadata, 365
portfolio development, 365
integrating support and guidance, 368
learning ability, 362
open learning environments, 640
SCOLEs (see Student-centered, open learning environments (SCOLEs))
skills design and development, 368
human performance, 304
job performance, pilots, 305
measurement, 305
non-aviation, 306
reliability, 305
separability, 306
training, 304–305
utility and cost benefit, 306
validity and sensitivity, 305
Simulations
dental hygiene skills and behaviors, 542
immersive (see Immersive technologies)
spatial, 727
and VW, 722–725
Situated cognition
authentic learning, 400
in formal educational settings, 401
and legitimate peripheral participation, 400
Situated learning
immersive environments, 721
VW (see Virtual Worlds (VW))
Situation awareness
and mental models, 472–473, 478
RPD model, 472
Sitzmann, T., 492, 493, 497
Sivin-Kachala, J., 207
Skarmeta, A.G., 506
Skinner, B.F., 24, 659
Skovsmose, O., 557
Slavin, R., 32
Sless, D., 376, 378
Smaldino, S., 258
Smart, A., 146, 147, 149
Smart, E.J., 728
Smart toy
age-related options, 708
attitudes and responses, 705
categorization, 703
characteristics, 702–703
children’s play, 701
as cognitive tools (see Cognitive tools)
developmental stages, children
concrete operations stage, 706
formal operations stage, 706
preoperational stage, 705–706
sensory-motor stage, 705
elementary school students, 704
fantasy play and imagination, 704
farm animals, 704
infrared transmitter, 703
intrinsic motivation
challenge, 706
control, 707
curiosity, 707
fantasy, 707
LCD screen, 704
linguistic expressions and storytelling, 704
MIT Media Lab, 708
multitouch and tablet technology, 708
RFID, 704
StoryMat, 703
story objects, 705
technology-based, 701
two-wheeled vehicle, 704
Smith, E., 175
Smith, G.G., 593
Smith, K.M., 376, 606, 610, 651, 652, 655
Smith, M.S., 251, 563, 564, 784
Smith, N.L., 405
Smith, P.A., 620
Smith, P.L., 43
Smolensky, P., 466, 467
SNAPP. See Social networks adapting pedagogical practice (SNAPP)
Snowberg, R., 33
Snyder, S.L., 747, 750
Social construction of technology (SCOT), 122
Social constructivist theory, 556
application, 27
CSCL, 27
Gestalt psychology, 27
mapping software and spreadsheets, 27
Piaget’s idea of constructivism, 27
popular educational formats, 27
Social networks adapting pedagogical practice (SNAPP), 796
Social responsibility, ethics
Age of Technology, 122–123
Barbour’s model, 122
description, 121
design-oriented disciplines, 123
emphasis, 121–122
Kaufman’s model, 122
planning, design and conation, 123–124
Socio-economic status (SES), 823
Sociotechnical interaction network (STIN), 155–156
So, H.-I., 104
Soller, A., 797–798
Son, J.Y., 809
Soo, K.-S., 95
Spada, D., 772
Sparrow, L., 125
Sparrow, R., 125
Spector, J.M., 92, 94, 241, 828
Spicer, J.I., 489, 494
Spires, H.A., 491
Spiro, R., 646
SPSS. See Statistical package for the social sciences (SPSS)
Squire, K.D., 95, 131, 136, 137, 405, 497, 577, 643, 739
Sriraman, B., 553
SRL. See Self-regulated learning (SRL)
Stadler, M., 367
Stahl, E., 520
Stahl, G., 745
Stake, R.E., 182, 183, 249
Stamas, S., 79
Stanley, J.C., 203
Starratt, R.J., 336
Statistical analysis system (SAS), 208
Statistical package for the social sciences(SPSS), 211
St.Claire, R.K., 609
Stead, G., 857
Stealth and formative assessment
action model, 315
average creation, 316
bayes net estimation, 315, 316
definition, 313–314
design instructional systems, 317
educational and psychological measurement, 313
elements, 314
framework, ECD, 314
implementation, 317
Index

Stealth and formative assessment (cont.)
Oblivion, 314–315
student-performance information, 313
students’ information, 317
variables, 314
Steen, L.A., 552
STEM. See Science, technology, engineering, and math (STEM)
Stenhouse, L., 162
Stensaker, I., 618
Stern, P., 895
Sterns, P.N., 575
Stevens, R.H., 59
Stewart, J., 465
Stewart, N., 472
Stickler, U., 642
Siggins, R.J., 310
Stillman, D., 818
Stimulus materials
design, 32, 37
external validity (see External validity)
internal validity (see Internal validity)
selection, 36
STIN. See Sociotechnical interaction network (STIN)
Stock, W., 414
Stokes, D., 132
Stolerman, E., 653
Stone, D.L., 46, 47
Stott, H.P., 472
St.Pierre, E., 222
Sträfling, N., 763
Straka, G.A., 256
Strand-Cary, M., 455
Stratford, J., 489
Stratford, S.J., 530
Strauss, W., 818–820
Streetland, L., 556
Strijbos, J.W., 443
Stringer, E.L., 162
Strobel, J., 280
Stroop, J.R., 491
STS. See Science, Technology and Society (STS)
Studer-McEwen, D., 843
Student-centered learning
approaches and technologies, 640
epipistemological variants, 639
open learning environments, 640
SCOLEs (see Student-centered, open learning environments (SCOLEs))
Student-centered, open learning environments (SCOLEs)
anchored instruction framework, 642
beliefs and dispositions, 641
case against, 643–644
case for, 644–645
civilization III, 643
cognitive demands, 646
crystal island, 643
description, 640
environmental detectives, 643
flat classroom, 643
individual interests, 642
individual learning needs, 639
interpretations and explanations, 641
Jasper series, 642
knowledge and experience, 642
knowledge forum, 642
learning systems designers, 640
lingering questions, 646
metacognition, 645
methods, 646
multiple representations, 641
planted letters, 643
prior knowledge and experience, 645
scaffolding, 645
understanding and meaning-making, 641
and WISE, 642
Student modeling
adaptive systems, 771
characteristics and contexts, 776
learners’ characteristics and/or needs, 770
learning styles, 772
methods, 770
Students, professional development
cohort 2 students, 592
computer-based interventions, 593
eighth grade classes, 595
ICON, 594
literacy skills, 593
national evaluation, 591, 592
SAT-10, 592
software packages, 591
supplement teachers, 592
supporting emergent literacy, 591
teacher training, 592
TELE-web, 593–594
text structure, 594
treatment classes, 595
tutoring inferences, 594
web-based system, 594
word recognition abilities, 593
Student writing, assessment
constructed responses, 595
formative, 595–596
Studio pedagogy
instructional designers, 656
limitations, 655
Stuebing, K., 415
Stufflebeam, D., 249
Subrahmanyam, K., 497
Suharwoto, G., 105
Sullivan, H., 143
Sullivan, M., 542
Summative and formative assessment
benefits, 311
characterizes, 311, 312
classroom activities, 311–312
computer-based educational systems, 312–313
educational purpose, 310–311
learner-centered measurement, 311
learning, 311
progressive approach, 311
scope, 311
traditional approach, 311
Summative evaluation
assessment, 251
design, 253
condition, 251
vs. formative, 249
innovation, 251
objectives, 251
program and project
and formative evaluation, 195
learning outcomes, 195
Technological pedagogical content knowledge-web (TPCK-W), 103–104
Technologies
adaptive representations, 810–811
3D representations, 811–812
dynamic representations, 811
haptic experiences, 812
and learning theories (see Learning theories)
multiple connected representations, 810
reified objects, 812
visual arts
advocates, 584
artistic expression, 584
art making, 584–585
assessment, 585–586
educators, 584
instructional strategies, 584
resources and expertise, 585
Technology-enabled assessment, 846
Technology-enhanced, modeling-based instruction (TMBI)
collaborative learning (see Collaborative learning, TMBI)
designing scaffolding, 534–535
K-12 science instruction, 528
MBI, 527–528
model-based thinking (see Model-based thinking)
MUVE, 529
PhET simulations, 528
River City curriculum, 529
scientific models, 527
students’ self-exploration, 528
wave interference model, 528, 529
Technology integration
change, systemic level, 847
cognitive tools, 824
courses, 107
definition, 840–841
educational research, 858
federal education legislation, 840
instructional technology, 840
internet technologies, 823
legislative mandates, 847
medical curriculum, 857
medical education reform, 854
national initiatives, 862
overenthusiastic impression, 847
pedagogically sound integration practices, 845
personalized instruction, 845–846
quality and availability, 840
student-centered pedagogies, 844
technology-enabled assessment, 846
traditional, 108
Technology readiness
adaptive testing, 835
computer-based and adaptive testing, 831
digital badging systems, 827
digital bombardment, 827
digital citizenship, 830
digital literacy, 828
effective communication, 830
embedded assessment, 832, 835–836
Google, 827
ISTE, 828
model-based assessment, 836
motivation and engagement of the learner, 830
multiple types, assessment, 832
observation assessment, 831
paper/pencil testing, 831
performance assessment, 836
performance-based assessment, 831
portfolio assessment, 832
problem-solving, 828
Rubric, 831–832
selecting and applying appropriate tools, 829–830
self-assessment, 832
student technology readiness and skills, 830–831
suitability, NETS® skill categories, 834
teaching/learning and performance environment, 835
technological society and economy, 828
technology driver’s licenses, 829
technology literacy tests, 829
TechYES, 832–833
types of assessments, 834
Technology transfer
AUC, 633
reexamination, 633
Teddlie, C.B., 222
Teijlingen, E., 251
Tennyson, R.D., 363
TEQ. See Test Emotions Questionnaire (TEQ)
Terminology, qualitative research
classification, 176
definition, 174
educational studies and ECT, 175–176
naturalistic settings, 174
qualitative analysis, 174
vs. quantitative research, 175
Tesch, R., 222, 223
Tessmer, M., 35, 655
Test Emotions Questionnaire (TEQ), 71
Textbooks
and educational materials, 714
glare-free screen, 713
printed texts, 713
school systems, 713
success of, 716
Thagard, P., 471
Theory of change
logic models, 196, 197
personal learning, 198
research literature, 198
Thomas, D., 349
Thomas, M.K., 136
Thompson, E., 261
Thompson, L., 354
Thorn, C.A., 340
Tilander, M., 584
Tillander, M., 584
Timperley, H., 368, 413, 415
Tinelli, L., 746, 751
Tingley, K., 898
T.Knezek, G., 214
TMBI. See Technology-enhanced, modeling-based instruction (TMBI)
Tobías, S., 406, 484, 491, 497, 645
Toce zk-Capelle, M., 440
Tofel-Grehl, C., 540
Tolentino, L., 812
Tomblin, S., 498
Tomei, L.A., 324
Tompsett, C., 915
Tompson, G.H., 490
Tondeur, J., 847
Index

Tortell, R., 405
Toulmin, S., 278, 279
Towle, G., 715
Toy
children’s play, 701
description, 701
electronic, 701
smart (see Smart toy)
technology-based, 701

TPACK. See Technological pedagogical content knowledge (TPACK)

TPCK-W. See Technological pedagogical content knowledge-web (TPCK-W)

Tracey, M.S., 146, 147
Tracey, M.W., 372
Training. See Applications of CTA, healthcare training
Transfer of learning
Apache Strike Force, 484
cognitive processes, 484
instructions, 484
nongame contexts, 484
pro-social computer game, 484
Space Fortress II computer game, 484
young diabetic patients, 484
Transfer of responsibility
actor-oriented and future learning perspective, 512–513
generic scaffolds, 510
multiple perspectives/disciplines, 512
one-to-one scaffolding, 507
peer scaffolding, 508

Transformative policy. See Transforming American education

Transforming American education
ambitious plan, 629
learning, technology, 627
NEA, 631
“states should” phrase, 629

Traxler, J., 844
Treffers, A., 555
Triantafillou, E., 425
Truong, M.S., 506
Tsai, C.-C., 353
Tsang, M.C., 242
Tschirgi, J.E., 453
Tseng, T., 683
Tu, C.-H., 747, 751
Tulgan, B., 818
Tuomi, I., 780
Twelker, P.A., 79, 610, 611
Twenge, J.M., 429, 430
Twenty-first century skills
definition, 828
educational technology
civic education (see Civic education)
classroom examination, 578
component, 572
historical inquiry (see Historical inquiry, educational technology)
integrated approach, 572
integration, teachers, 578
knowledge, 572
literature reviews, 572, 577–578
NCSS, 571–572
personal technology, 578
social studies, 571, 572
student usage, 572

European Commissions’ TENCompetence project, 828
knowledge economy, 886
technology readiness, 836

Twining, P., 175
Tyler-Wood, T.L., 203, 214, 215
Tyson, C.A., 571

U
UDL. See Universal design for learning (UDL)
Ullmer, B., 688, 689
Ulrich, D., 617
UM. See User modeling (UM)
UMD. See The University of Maryland (UMD)
Universal design for learning (UDL), 119
The University of Maryland (UMD), 181
Usability
design elements, 715
e-textbook, 715

User modeling (UM)
description, 425
domain/teaching strategy, 426
ITSs, 426
methods and techniques, 425–426
researchers’ preferences, 426
self advice, OLMs, 426
static/dynamic approaches, 425

Usha, H.S., 714
Utai, D.H., 262

V
Valanides, N., 107
Valdes-Corbeil, M.E., 715
Vallejo, M.A., 204
van Aalst, A., 506
van Aalst, J., 442
van den Akker, J., 83, 85, 131, 137, 144
van den Bos, B.P., 368
van den Heuvel-Panhuizen, M., 555
van de Pol, J., 506, 507
van der Meijden, H., 494
van der Meij, H., 811
van der Meij, J., 810
Vandewaetere, M., 427
Van de Wiel, M., 362
Van Dijk, D., 415
Van Heuvelen, A., 271
van Hooft, J.C., 520
van Hout-Wolters, B.H.A.M., 506, 530
van Joolingen, W.R., 452, 455, 456, 506, 530
Van Langenhove, L., 413
Van Merriënboer, J.J.G., 363
Van Merriënboer, J.J.G., 363
Varma, K., 506
Vauvasseur, C.B., 843
Veenman, M.V.J., 454
Veermans, K., 456
Veleutianos, G., 758, 761, 763, 764
Velmahos, G.C., 541, 544
Ventura, S., 429, 430
Vermut, J., 367
Vernon, J., 520
Verschaffel, L., 555
Verstegen, D., 653
Viau, R., 519, 521
Video games, 493
Vigdor, J.L., 841, 844
Villachica, S.W., 46, 47, 652
Virtual learning environments (VLEs), 326
Virtual tutee system (VTS), 70
Virtual Worlds (VW)
Avatar Anna Caruso, 722
educational and simulations, 723
growth and use, 724–725
immersive technologies, 721–722
instructional design, 728–731
intentionality of design, 723–724
learning affordances and limitations (see Affordances)
and MMO, 722
model-based environments, 722
situated embodiment, 723
situated learning, 721
theoretical foundations, 725–726
type and variety, 723
video game, 722
Whyville and Minecraft, 721
Virvou, M., 490, 491, 497
Visscher-Voerman, I., 83, 146, 652
Visscher-Voerman, J.I.A., 83
Visser, L., 143
Visual arts. See Visual arts education
Visual arts education
communication, modern society, 581
DBAE and STEM, 582
definition, 582
design and technology trends (see Design and technology trends, visual arts)
educational research, 582
research, 586–587
school-based visual, 582
technological innovations, 581
technology (see Technologies)
Visualization techniques
application domains, 801
collaborative learning, 795–798
description, 790
designing environments, learning processes, 800–801
finding learning material, 791–793
information visualization, 790–791
maps and drawings, 789
real-life settings, 802
Reconstituted Ptolemy’s world map, 789, 790
(self-)reflection, learning process, 798–800
subject matter, 793–795
visual approaches, 802
visualization techniques, 789
Volman, M., 506
Voogt, J., 828
Vos, N., 490, 494
Voss, A., 205
Voss, D.R., 145, 147
Vratulis, V., 747, 749, 752
VTS. See Virtual tutee system (VTS)
VW. See Virtual Worlds (VW)
Vygotsky’s model, 152
Vygotsky, L.S., 24, 152, 519, 583

W
Waddington, T., 405
Wagner, B., 417
Wagner, D., 889
Wallace, R., 520
Wallace, S.R., 305
Walling, D., 582
Walls, R.T., 845
Walsh, D.A., 493
Walters, R.H., 494
Wang, C.-Y., 405
Wang, F., 135
Wang, Q., 144, 147–149, 859
Warburton, S., 729
Ware, C., 789
Warschauer, M., 119
Wasser, J.D., 228
Watter, S., 491
Watts, D., 336
Waycott, J., 714
Wayman, J.C., 335, 337
Weaver, W., 374, 376
Web 2.0
affordances, 406–407
authentic and meaningful contexts, 751
authentic learning environments, 750
collaborative tasks, 748–749
community and teacher use, 143
CSCL, 441
description, 745
development, 230
distributed cognition, 746
eyears, 229
flexible communication and interaction, 746
learning activities, 746
LtC (see Learning through collaboration (LtC))
multimedia capacity, 750
publishing and sharing, 747–748
and QDAS, 229–230
qualitative research, 230
research, 747
situated cognition, 746
sociocultural theory, 746
support distributing cognition, 746
tangible artifacts (see Tangible artifacts)
tools, 230
web-based applications, 745
Web-based Inquiry Science Environment (WISE), 509, 534–535, 642
Web-based learning environments
IMS-LD, 664
learners, 664
platforms/authoring tools, 663
Webster, P.H., 587
Web 2.0 Technologies, CSCL, 441
Wedman, J., 655
Wehlage, G., 403
Wei, J., 543
Weinberger, A., 442, 444
Weiser, M., 688, 693
Weiss, C.H., 248
Weiss, L., 497
Weitzman, E., 223
Weller, M., 914
Wells, S., 159
Wenger, E., 336
Wenk, B., 780
West, R.E., 491, 847
Wetzel-Smith, S.K., 307
Wetzle, C.D., 484
Wheeler, S., 747, 749, 752
Whitehead, B.V., 484
Whitehead, J., 165, 167
Whittington, J., 474
Whittle, A., 621
Whitworth, A., 158
Wieman, C.E., 528
Wiggins, 835
Wilensky, U., 531, 683
Wiley, D., 118, 780, 782–784, 784, 842
Wilhelm, O., 471
Wilhelm, P., 454
Willcockson, I.U., 859
William, R., 260
Williams, B.R., 617
Williams, M., 714
Williams, R., 487
Williams, S.M., 400
Willis, J.W., 186
Willow, D.M., 375
Wilson, J.I., 631
Wind, A.P., 496
Wing, J.M., 531
Winne, P., 414
Winn, W., 14, 89, 91–93
WISE. See Web-based Inquiry Science Environment (WISE)
Wise, A.F., 492
Wishart, J., 497
Wittgenstein, L., 465
Wittmann, E.C., 552–555
Wolcott, H.F., 183
Wolk, R.M., 634
Wong, A.F.L., 844
Wong, N.Y., 350
Wood, D., 503, 504
Woodward, H., 714, 718
Woo, H.L., 759
Woolf, B.P., 773
Wopereis, I., 367
WorldWide Telescope Project, 216
Wray, S., 363
Wright, B., 831
Wu, H., 811
Wulfeck, W.H., 307
Wu, Y., 747, 751, 854

X
Xie, Y., 747–748
XO computer, OLPC, 884, 890

Y
Yacef, K., 430
Yackel, E., 556
Yager, R.E., 259
Yamagata-Lynch, L.C., 153, 155
Yanez, E., 351
Yang, C.C., 375
Yang, M., 418, 419
Yates, K.A., 542–544
YCCI. See Young Children’s Computer Inventory (YCCI)
Yeaman, A., 116
Yinger, R.J., 895
Yin, R.K., 138, 182, 183
Yorke, M., 416
Young, A., 898
Young Children’s Computer Inventory (YCCI), 204
Youtie, J., 251

Z
Zacharia, Z.C., 531
Zago, L., 57
Zahorik, J.A., 894
Zaltman, G., 617
Zaman, B., 689
Zeichner, K.M., 164, 363
Zemke, R., 610, 818
Zhang, B., 530
Zhang, J., 808
Zhang, M., 504
Zhang, Y., 899
Zhao, N., 354
Zimmerman, B.J., 363
Zimmerman, C., 452, 453
Zimmerman, E., 586
Zlotolow, S., 617
Zone of proximal development (ZPDs), 504, 505
Zorko, V., 747, 749, 751
ZPDs. See Zone of proximal development (ZPDs)
Zufferey, G., 692
Zvacek, S., 258