
17.1 INTRODUCTION

Educational games and simulations, unlike direct forms

of instruction, are experiential exercises. That is, student

teams may be racing each other to reach a pot of gold (game),

sifting through an archeological site and analyzing the arti-

facts (simulation), or managing a financial institution for

several months (simulation).

Games and simulations entered the broad educational

scene in the late 1950s. Until the early 1970s, they were not

part of the instructional design movement. Instead, these

exercises were primarily developed by business and medi-

cal education faculty and sociologists who adapted instruc-

tional developments pioneered by the military services. Al-

though popular in the public schools in the 1960s, games

and simulations in United States classrooms declined with

the advent of the basic-skills movement.

Currently, the increased power and flexibility of computer

technology is contributing to renewed interest in games and

simulations. This development coincides with the current

perspective of effective instruction in which meaningful

learning depends on the construction of knowledge by the

learner. Games and simulations, which can provide an envi-

ronment for the learner’s construction of new knowledge,

have the potential to become a major component of this fo-

cus.

The technology, however, faces two major problems at

present. One is that comprehensive design paradigms de-

rived from learning principles have not been available.

Coupled with the variety of disciplines attempting to develop

games and simulations, the result is a variety of truncated

exercises often mislabeled as simulations. One study, for

example, referred to a static computer graphic of a pegboard

as a simulation. Another study that purported to be a simula-

tion of decision making was a series of test questions about

different situations in which the student was to assume that

he or she was an administrator of special education. A third

“simulation” simply provided preservice teachers practice

in completing classroom inventory forms, supply requisi-

tion forms, and incident reports. These latter two examples

are context-based problems, but they are not simulations.

These mislabeled exercises indicated the need for effec-

tive design models for games and simulations. Design mod-

els are the “soft technologies” that influence and activate the

thought processes of the learners rather than the “hard tech-

nology” of the computer (Jonassen, 1988). Also, poorly de-

veloped exercises are not effective in achieving the objec-

tives for which simulations are most appropriate—that of

developing students’ problem-solving skills. Finally, poorly

developed games and simulations often have negative ef-

fects on students, some of which are discussed later in the

chapter.

The second major problem for developers and users of

games and simulations is the lack of well-designed research

studies. Much of the published literature consists of anec-

dotal reports and testimonials. These discussions typically

provide a sketchy description of the game or simulation and

report only perceived student reactions.

Further, as indicated by Pierfy (1977), most of the research

is flawed by basic weaknesses in both design and measure-

ment. Some studies implemented games or simulations that

were brief treatments of 40 minutes or less and assessed ef-

fects weeks later on midterm or final examinations. Inter-

vening instruction, however, contaminates the results.

Another major design weakness is that most studies com-

pare simulations to regular classroom instruction (lecture and/

or classroom discussion). However, the instructional goals

for which each can be most effective often differ. The lec-

ture method is likely to be superior in transmitting items of

information. In contrast, simulations have the potential to

develop students’ mental models of complex situations as

well as their problem-solving strategies. Not surprisingly, a

meta-analysis of 27 research studies (for the period 1969—

1979) that met basic validity and reliability criteria found

that simulations were not superior to lecture or discussion

on information-oriented posttests (Dekkers & Donatti, 1981).

Among the measurement problems in reported studies is

the failure to describe the nature of the posttests used to

measure student learning. Some studies use essay questions,

while others use some type of instructor-developed test with
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no reported validity or reliability information. In addition,

some researchers provided the simulation group with addi-

tional problems to solve or information summaries that the

other group did not receive.

Another problem is that comparison studies often are not

sensitive to the student characteristics that interact with in-

struction to influence achievement. One study by Wentworth

and Lewis (1973) identified three characteristics that medi-

ated the instructional effects of a commercially developed

simulation for junior college students in economics. Formu-

lation of a stepwise regression model to identify the vari-

ables that predict achievement indicated that prior knowl-

edge, ability, and the school attended were significant con-

tributors to posttest achievement on a standardized econom-

ics test for students in the course-related simulation. In other

words, like other forms of instruction, simulations and games

are likely to be more effective with some students than with

others.

Finally, the classroom research paradigm implemented in

the 1960s and 1970s did not document the actual instruc-

tional processes associated with an innovation. Instead, the

innovation was assumed to differ substantially from typical

classroom instruction, and the innovation was compared with

traditional practice. Subsequent analyses of the 1970s class-

room research has indicated that, in many cases, instruction

in the comparison classes shared key characteristics with the

innovative classes (see House et al., 1978; Glass, 1979; Hall

& Loucks, 1977). The result was a “no significant differ-

ence” finding in these comparisons.

Like other classroom research, studies that addressed

games and simulations did not document the ways that stu-

dents interacted with the subject matter and each other dur-

ing a game or simulation. For example, although simula-

tions are described as enhancing decision making, key ques-

tions unasked by the research are: For which student and in

what ways? What tradeoffs between increased decision mak-

ing and information load? And so on. At present, a few stud-

ies are beginning to investigate the dynamics of student in-

teractions with games and simulations, and this research and

the implications for design are discussed in this chapter.

Given the issues facing the gaming and simulation field,

the purpose of this chapter is threefold. The chapter first pre-

sents and discusses a definitive framework for games and

simulations that addresses the essential features of each type

of exercise. Then the chapter discusses the research studies

that have implications for instructional design. The chapter

concludes with a discussion of recommended guidelines for

research on games and simulations.

17.2 A DEFINITIVE FRAMEWORK

Games and simulations are often referred to as experien-

tial exercises because they provide unique opportunities for

students to interact with a knowledge domain. Two concepts

important in the analysis of the nature of games and simula-

tions are surface structure and deep structure. Briefly de-

fined, surface structure refers to the paraphernalia and ob-

servable mechanics of an exercise (van Ments, 1984). Ex-

amples in games are drawing cards, moving pieces around a

board, and so on. An essential surface structure component

in a simulation, in contrast, is a scenario or set of data to be

addressed by the participant.

Deep structure, in contrast, may be defined as the psy-

chological mechanisms operating in the exercise (Gredler,

1990, 1992a). Deep structure refers to the nature of the in-

teractions (1) between the learner and the major tasks in the

exercise, and (2) between the students in the exercise. Ex-

amples include the extent of student control in the exercise,

the learner actions that are rewarded in the exercise or which

receive positive feedback, and the complexity of the deci-

sion sequence in the exercise (e.g., linear or branching).

17.2.1 Deep-Structure Characteristics

A shared feature of games and simulations is that they

transport the players (game) or participants (simulation) to

another world. For example, children may be searching for

vocabulary clues to capture a wicked wizard (game), and

medical students may be diagnosing and treating a coma-

tose emergency room patient (simulation).

Another similarity is that, excluding adaptations of simple

games like Bingo, games and simulations are environments

in which students are in control of the action. Within the

constraints established by the rules, game players plan strat-

egy in order to win, and simulation participants undertake

particular roles or tasks in order to manage an evolving situ-

ation. Examples of evolving situations are managing a busi-

ness and designing and managing research projects on gen-

erations of genetic traits.

The deep structure of games and simulations, however,

varies in three important ways. First, games are competitive

exercises in which the objective is to excel by winning. Play-

ers compete for points or other advances (such as moving

forward on a board) that indicate they are outperforming the

other players. In a simulation, however, participants take on

either (1) demanding, responsible roles such as concerned

citizens, business managers, interplanetary explorers, or phy-

sicians, or (2) professional tasks such as exploring the causes

of water pollution or operating a complex equipment sys-

tem. In other words, instead of attempting to win, partici-

pants in a simulation for the classroom are executing serious

responsibilities, with the associated privileges and conse-

quences. Jones (1984, 1987) refers to this characteristic of

simulations as “reality of function.”

A second difference is that the event sequence of a game

is typically linear, whereas a simulation sequence is nonlin-

ear. The player or team in a game responds to a stimulus,

typically a content-related question, and either advances or

does not advance, depending on the answer. This sequence

is repeated for each player or team at each turn.

In a simulation, however, participants at each decision

point face different problems, issues, or events that result in



large measure from their prior decisions. In a computer-de-

livered simulation, this feature is referred to as branching.

A third difference between simulations and games is the

mechanisms that determine the consequences to be deliv-

ered for different actions taken by the students in the exer-

cise. Games consist of rules that describe allowable player

moves, game constraints and privileges (such as ways of

earning extra turns), and penalties for illegal (nonpermiss-

able) actions. Further, the rules may be imaginative in that

they need not relate to real-world events. In contrast, the

basis for a simulation is a dynamic set of relationships among

several variables that (1) change over time and (2) reflect

authentic causal processes (i.e., the relationships must be

verifiable). For example, in diagnostic simulations in which

the student is managing the treatment of a patient, the patient’s

symptoms, general health characteristics, and selected treat-

ment, all interact in predictable ways.

In addition to these three general characteristics, particu-

lar games and simulations also differ in the tasks established

for students and the actions that are rewarded in the exer-

cise. These specific differences are discussed later in the

chapter.

17.2.2 Experiential and Symbolic Simulations

The broad category of instructional simulations consists

of two principal types. One type, referred to as experiential

simulations, establishes a particular psychological reality and

places the participants in defined roles within that reality.

The participants, in the context of their roles, execute their

responsibilities in an evolving situation. Experiential simu-

lations, in other words, are dynamic case studies with the

participants on the inside (see 23.4.2).

Essential components of an experiential simulation are

(1) a scenario of a complex task or problem that unfolds in

part in response to learner actions, (2) a serious role taken by

the learner in which he or she executes the responsibilities

of the position, (3) multiple plausible paths through the ex-

perience, and (4) learner control of decision making (see

Chapter 33).

Experiential simulations originally were developed to pro-

vide learner interactions in situations that are too costly or

hazardous to provide in a real-world setting. Increasingly,

however, they have begun to fulfill a broader function, that

of permitting students to execute multidimensional problem-

solving strategies as part of a defined role. The need for such

exercises is indicated by several studies. For example,

Willems (1981) found that students in law, social geogra-

phy, science, and sociology often are unable to apply knowl-

edge they had acquired to the task of solving problems. Fur-

ther, de Mesquita (1992) found that 53% of school psychol-

ogy students and graduates initially made an incorrect diag-

nosis in a school-referral problem involving a third-grader.

Experiential simulations are designed to immerse the

learner in a complex, evolving situation in which the learner

is one of the functional components. The advent of com-

puter technology, however, made possible the design of a

different type of interaction exercise: a symbolic simulation.

Briefly, a symbolic simulation is a dynamic representation

of the functioning or behavior of some universe, system, set

of processes, or phenomena by another system (in this case

a computer). The behavior that is being simulated involves

the interaction of two or more variables over time.

A key characteristic of symbolic simulations (like experi-

ential simulations) is that they involve the dynamic interac-

tions of two or more variables. An example of a symbolic

simulation is a population-ecology simulation with 75 vari-

ables that represents global ecological processes for the 200-

year period after 1900 (Forrester, 1971; Hinze, 1984). An-

other is a dynamic computer representation of a complex

equipment system. The student, interacting with a symbolic

simulation, may be executing any of several tasks, such as

troubleshooting equipment or predicting future trends. How-

ever, the student remains external to the evolving events.

Many computer exercises erroneously labeled as simulations

do not meet this criterion, and this shortcoming arises from

the misapplication of the term simulated. For example, simu-

lated diamonds are imitation diamonds. Extrapolation of this

concept to instructional development has led to the errone-

ous designation of imitations of objects or events as “simu-

lations.” An example is a brief Apple II computer program

that purports to simulate plant growth. However, the pro-

gram only presents an outline of a two-leafed plant that shoots

up faster, slower, or not at all, depending on whether the

student selects “full light,” “half light,” or “no light.” The

motion of the stilted graphic is a highly simplistic imitation

of plant growth, but it is not a simulation. In other words, an

animated graphic of some event is not necessarily a simula-

tion.

Symbolic simulations differ from experiential simulations

in two major ways. First, the learner is not a functional ele-

ment of the situation. Instead, symbolic simulations are popu-

lations of events or interacting processes on which the learner

may conduct any of several different operations. In other

words, the deep structure of symbolic simulations is that the

learner manipulates variables that are elements of a particu-

lar population. The purpose is to discover scientific relation-

ships or principles, explain or predict events, confront mis-

conceptions, and others. Potential instructional purposes for

symbolic simulations are described by Riegeluth and

Schwartz (1989) as explanation, prediction, solution, or pro-

cedure. Tennyson et al. (1987) differentiate simulations as

task oriented or problem oriented.

The second major difference is the mechanisms for rein-

forcing appropriate student behaviors. The learner in an ex-

periential simulation steps into a scenario in which conse-

quences for his or her actions occur in the form of (1) other

participants’ actions or (2) changes in (or effects on) the com-

plex problem that the learner is attempting to manage. The

learner who is executing random strategies often quickly



experiences powerful contingencies for such behavior, from

the reactions of other participants to being exited from the

simulation for inadvertently “killing” the patient.

The symbolic simulation, however, is a population of

events or set of processes external to the learner. That is,

there is not an assigned role that establishes a vested interest

for the learner in the outcome. Although the learner is ex-

pected to interact with the symbolic simulation as a researcher

or investigator, the exercise, by its very nature, cannot divert

the learner from the use of random strategies.

One solution is to ensure, in prior instruction, that stu-

dents acquire both the relevant domain knowledge and es-

sential research skills. That is, students should be proficient

in developing mental models of complex situations, testing

variables systematically, and revising one’s mental model

where necessary. In this way, students can approach the sym-

bolic simulation equipped to address its complexities, and

the possibility of executing random strategies holds little

appeal.

Table 17-1 summarizes the primary characteristics of

games, experiential simulations, and symbolic simulations.

Specific design rules and subtypes are discussed in the fol-

lowing sections.

17.3 ACADEMIC GAMES

As already indicated, games are competitive contests char-

acterized by discrete plays or moves by the players. The ob-

jective is to win by any strategy permitted by the rules. Of

importance in selecting games for classroom use are

particular characteristics of the deep structure of the exer-

cise. First, academic games should not sanction strategies

that involve questionable ethics. The deep structure of Mo-

nopoly, for example, is such that a player is reinforced by

attempting to bankrupt other players. Although an accept-

able practice in a parlor game, reinforcing student strategies

designed to bankrupt others is not appropriate in the public

school classroom.

The deep structure of academic games should meet two

requirements. First, chance or random factors should not

contribute to winning. For example, some poor examples of

computer games purport to develop students’ spatial skills.

However, they are merely two-dimensional puzzles that may

be solved by guessing (Edens & Gredler, 1990).

Second, winning in academic games should depend solely

on the application of subject-matter knowledge and/or prob-

lem-solving skills. Given this characteristic, games may be

used for any of four general purposes in the classroom. They

are (1) to practice and/or to refine knowledge/skills already

acquired, (2) to identify gaps or weaknesses in knowledge

or skills, (3) to serve as a summation or review, and (4) to

develop new relationships among concepts and principles.

The academic skills that contribute to challenging class-

TABLE 17-1. PRIMARY CHARACTERISTICS OF GAMES AND SIMULATIONS

        Games                           Simulations

Experiential           Symbolic

Setting:
Students are transported to  another world or environment

Purpose:
Competition and winning
Fulfilling a professional role
Executing a professional task

Event sequence:
typically linear
Nonlinear or branching

Mechanisms that determine consequences:
Sets of rules (may be imaginative)
Dynamic set of authentic causal relationships among
two or more variables

Participant is a component of the evolving scenario and
 executes the responsibilities of his or her role

Participant interacts with a database or sets of processes to
discover scientific principles, explain or predict events,
and confront misconceptions

x x x

x
x

x

x
x x

x
x x

x

x



room games are the intellectual skills (see 18.3.3) identified

by Gagn�e´� (1977, 1985). They are discriminating, such

as matching chemical formulas to names; concept learning,

such as classifying paintings into styles or periods; and rule

using, such as predicting consequences from events.

One key characteristic of games is that, during the exer-

cise, they alter two aspects of the classroom reward struc-

ture. They are the frequency of reinforcement and the imme-

diacy of feedback (DeVries & Edwards, 1973). The player

or team that successfully responds to the game stimulus, typi-

cally an academic question or problem, is reinforced imme-

diately by advancing in the game. The student or team deci-

sion that is incorrect receives immediate feedback by not

advancing in the exercise.

Manual games are limited in the amount and extent of

feedback they can provide for learner actions. The data-pro-

cessing capability of the computer, however, makes possible

the development of sophisticated games in which students

apply a broad base of knowledge to solve complex prob-

lems. A rare example of this type of game requires the stu-

dent to apply his or her knowledge of social and economic

institutions in 17th-century France to improve the social

standing of a Frenchman of that century (Lougee, 1988). At

each turn, the student has several options, such as attempt-

ing to establish a marriage contract, buying and selling grain,

leasing land, and so on. The computer evaluates each choice

made by the player and maintains a running score in the form

of a social index.

Success in such a game requires players to direct and

manage their thinking in an efficient and effective manner.

Variables must be noted, likely consequences of actions must

be considered in advance, and then a course of action must

be developed. These capabilities are of the type referred to

by Gagne (1977, 1985) as cognitive strategies. Thus, one

advantage of computer games is that they have the potential

to challenge students’ thinking in a variety of ways.

17.4 EXPERIENTIAL SIMULATIONS

Like the player in an academic game, the participant in a

simulation also applies a knowledge base. However, the simu-

lation participant is facing a complex situation in which he

or she is one of the components. Further, the situation evolves

and changes in part in response to the participant’s decisions

and actions.

Within the category of experiential simulations, exercises

may differ in (1) the nature of the participants’ roles, (2) the

types of decisions and interactions in the exercise, and (3)

the nature of the relationships among the variables. That is,

experiential simulations may be individual or group exer-

cises, the focus may vary from executing professional ex-

pertise to experiencing a different cultural reality, and the

relationships among the variables may be quantitative or

qualitative. Four major types of experiential simulations are

data management, diagnostic, crisis management, and so-

cial-process simulations (Gredler, 1992a).

17.4.1 Data Management Simulations

A participant in a data management simulation typically

functions as a member of a team of financial managers or

planners. Each team that is managing a company or institu-

tion allocates economic resources to any of several variables

in order to achieve a particular goal. The long-range goal is

to improve the status of the institution or company (Gredler,

1992a).

The simulation typically encompasses 12 to 18 business

quarters (rounds) in which each team makes several short-

and long-term investment and budgeting decisions. At the

end of the business quarter (from 45 minutes to 2 to 3 hours),

the decisions are analyzed by the computer, and each team

receives an updated printout that indicates their institution’s

financial standing. The team analyzes the printout and makes

the next set of decisions.

Although the team members interact in making decisions,

the primary focus in data management simulations is on the

interrelationships and trade-offs among quantifiable vari-

ables. In a bank management simulation, for example, par-

ticipants are expected to address the relationships among

profitability, liquidity, and solvency, and between profits and

volume of business (Galitz, 1983).

Data management simulations are based on mathematical

models that adjust parameter values as student inputs are

made. The simulation designer specifies the set of equations

that reflects the relationships among the variables. Depend-

ing on the complexity of the situation, the number of re-

quired equations may range from half a dozen to over 50.

17.4.2 Diagnostic Simulations

Originating in medical education, diagnostic simulations

are currently found primarily in several health care fields,

education, and psychology. Some diagnostic simulations are

team exercises that require the discovery, evaluation, and

interpretation of relevant data, as in an air accident investi-

gation (Rolfe & Taylor, 1984). In the majority of examples,

however, a student takes the role of a physician, nurse, psy-

chologist, or teacher. The student selects and interprets data

and selects corrective actions in the diagnosis and manage-

ment of the patient’s or client’s problem.

The deep structure of diagnostic simulations consists of

an evolving problem that requires sequential interrelated

decisions. The sequential nature of the task links each deci-

sion to prior decisions and results. Therefore, as in real situ-

ations, errors may be compounded on top of errors as non-

productive diagnostic and solution procedures are pursued

(Berven & Scofield, 1980).

Key components of diagnostic simulations are a sketchy

description of a multifaceted problem, the prescribed role of

the participant, and multiple plausible alternatives at each

decision point (McGuire, Bashook & Solomon, 1976). Also,

the problems are those that involve the consideration of more

than a simple cause. Thus, they are not textbook problems.



In an air accident investigation, for example, contributing

factors are both human and mechanical (Rolfe & Taylor,

1984).

Of major importance is that the student who is unsure of

the appropriate course of action can find plausible choices.

The only feedback received by the student during the exer-

cise is either the data he or she requested or the effects of a

selected action on the situation. Further, the complications

that the student must address will vary depending on his or

her unique pattern of decisions (McGuire et al., 1976). Thus,

a major purpose of many diagnostic simulations is to obtain

a record of the student’s progress through the multiple pos-

sible paths so as to differentiate adequate problem solvers

from the students using ineffective approaches.

Figure 17-1 illustrates the various paths through a simu-

lation for the diagnosis and management of a patient. Each

of the major strategy decisions, e.g., take history, obtain labo-

ratory data, and so on, is represented by a box on the simula-

tion map. Within the major strategy choices, students may

select from a number of plausible specific decisions. The

map indicates the decisions to be made and those to be

avoided, according to a panel of experts. Solid arrows indi-

cate the route recommended by a panel of experts. As indi-

cated by the map, the student is not terminated from the simu-

lation unless he or she takes action that causes the patient’s

death.

Early examples of diagnostic simulations for individual

students were multiple-branching exercises in booklet form.

They have since been replaced by computer-delivered exer-

cises, some of which accept voice input (see Distlehorst &

Barrows, 1982; Pickell et al., 1986).

17.4.3 Crisis Management Simulations

A crisis management simulation begins with an unexpected

event that threatens the welfare of an individual or a group

and which must be quickly resolved. Key components of

crisis-management simulations are the rapidly increasing time

pressure and the need to prevent a major disaster of some

sort.

Both political-crisis exercises, in which a country’s secu-

rity or welfare is threatened, and combat simulations are

examples. Political-crisis exercises involve a small team of

decision makers representing each country and interacting

in a compressed time frame. Combat simulations used for

training are either individual or team exercises, and these

simulations have been revolutionized by advanced computer

technology. Large-scale field maneuvers used to educate

commanders and their staffs and some weapons systems train-

ing are currently conducted with discrete and networked

computer simulations (Oswalt, 1993). A current project is

creating a simulated environment that will permit military

personnel to view the battlefield in three dimensions, includ-

ing the capability to reconnoiter the terrain (Oswalt, 1993,

p. 154).

17.4.4 Social-Process Simulations

The focus of data management, diagnostic, and crisis man-

agement simulations is on a complex task or problem in which

human interactions play minor roles, if at all. The student

behaviors of primary interest are the decisions made to ad-

dress a complex cognitive problem. In contrast, the deep

structure of social-process simulations is the interactions

among the participants and the ways that one’s beliefs, as-

sumptions, goals, and actions may be questioned, hindered,

or supported in interactions with others (Gredler, 1992a).

Goals of social-process simulations are (1) to develop an

understanding of a particular social organization or culture,

(2) to help develop abilities to think and communicate in an

unfamiliar situation (Jones, 1982), or (3) to help develop

empathy for others by experiencing an aversive, situation as

others would, followed by reviewing and discussing one’s

beliefs and assumptions (Thatcher, 1983; Thatcher &

Robinson, 1990).

Participants typically take roles with different interests,

priorities, and responsibilities in one of the groups faced with

conflicting issues or tasks. Among the examples of social-

process simulations are (1) an economically deprived region

that must address a proposed tourism development that will

also have some negative effects, and (2) the writing, editing,

and broadcasting of a radio news program as items continue

to come in until air time.

Key components of social-process simulations are (a) a

precipitating event or key task, (b) well-defined participant

roles, (c) complicating factors, and (d) context (Gredler,

1992a). All of these components interact with each other to

set in motion the interactions among participants that are the

core of the simulation. Of major importance is that each role

(1) must have a stake in the outcome of the exercise and (2)

be one to which the participant can commit his or her thoughts

and feelings; that is, the role must generate “reality of func-

tion.”

17.4.5 Discussion: Experiential Simulations

Experiential simulations vary widely in the type of expe-

rience established for the learner and the type of causal model

underlying the exercise. Data management simulations are

most often team exercises in which the relationships among

the variables to be manipulated are specified by sets of math-

ematical equations—a quantitative causal model (see Table

17-2).

In contrast, diagnostic, crisis management, and social-pro-

cess simulations are based on qualitative causal models. That

is, cause-effect contingencies are drawn from actual cases,

and the optimal route through the simulation is verified by

experts who are asked to work through the exercise. Social-

process exercises, however, depend on the interactions of

individuals as they react to different situations. Unless con-

tingencies for different actions have been carefully embed-

ded in the context and various roles, the exercise can take

unexpected directions.



Figure 17-1. Map of a simulation to diagnose and manage patient SL. Numbers in boxes refer to items to be

chosen and to items to be avoided. Solid arrows indicate the route recommended by a panel of experts. Dashed

arrows indicate alternate path; solution still possible. Dotted arrows indicate path to unsatisfactory termination.

(Reprinted by permission of the Psychological Corporation.)



Of the four types, only the diagnostic simulation can be

computer based. Decisions in the other types typically re-

quire team decision making, and computers cannot replicate

social situations (Crookall, Coleman & Oxford, 1992).

However, computer analyses of data generated by team

members often serves as input to participant decisions.

Experiential simulations share several key characteristics.

First, the learner is a functional component of the situation

and experiences it from the inside. Second, the learner takes

on serious responsibilities as a participant in an ongoing fluid

situation. Third, the intent is for the participant to experi-

ence the effects of his or her decisions; i.e., the student’s

discipline problem becomes worse, a proposed compromise

is repealed, and so on. Finally, experiential simulations also

can provide opportunities for students to develop their cog-

nitive strategies because the exercises require that they or-

ganize and manage their own thinking and learning.

17.5 SYMBOLIC SIMULATIONS

In contrast to experiential simulations, a symbolic simu-

lation is a dynamic representation of the functioning or be-

havior of some universe, system, set of processes, or phe-

nomena by another system (in this case, a computer). In other

words, symbolic simulations are populations of events or

sets of interacting processes. The role of the learner in rela-

tion to a symbolic simulation is typically that of a researcher

or investigator. That is, the learner manipulates different vari-

ables in order to discover scientific relationships, explain or

predict events, or confront misconceptions.

Symbolic simulations may be classified according to the

nature of the variables and the nature of the interactions

among them. Four types of symbolic simulations are cur-

rently in use that differ in these characteristics. They are data-

universe simulations, system simulations, process simula-

tions, and laboratory-research simulations.

17.5.1 Data Universe Simulations

A data universe simulation represents the behavior of sets

of related elements that compose a population of continuing

events. The simulation expresses the relationships among

the variables through the use of mathematical equations. An

example is the population ecology simulation described ear-

lier. The simulation illustrates the effects of the 75 variables

on population, capital investment, food production, pollu-

tion, and quality of life (Forester, 1971; Hinze, 1984). The

output is a graph that illustrates the effects of continued turn-

of-the-century trends on the five characteristics of civiliza-

tions. Trends also may be altered by the user and the effects

observed.

The situation typically posed for the student in a data uni-

verse simulation is to test student-generated hypotheses about

a large population of interrelated variables and outcomes.

TABLE 17-2. SUMMARY OF EXPERIMENTAL SIMULATIONS

Type Structure Underlying Model Task

Successive rounds of decision
making; typically team based

Quantitative Allocate economic
resources to any of several
variables to improve status
of the institution or
company

Data management

Diagnostic An evolving complex
problem that requires
sequential interrelated
decisions; typically an
individual exercise

Qualitative Select and interpret data
and implement strategies in
order to manage a complex,
evolving problem

Crisis management An escalating situation that
threatens the welfare of a
group or individual; may be
individual or team based

Qualitative Resolve the escalating
situation under increasing
time and other pressures

Social-process
simulations

The interaction of a
aprecipitating social task or
event, well-defined partici-
pant roles, complicating
factors, and context; team-
based exercise

Qualitative Resolve a social problem or
issue that is accompanied
by different priorities or
goals of the associated roles



The goal is to discover relationships or trends among the

variables. The purpose of a data universe simulation typi-

cally is to provide students with opportunities to discover

scientific laws and principles, such as the laws of genetics

(see 24.9 for a discussion of databases and cognitive tools).

Note that data universe simulations differ from other simu-

lations that involve the manipulation of variables. First, ste-

dents are functioning as researchers by testing their own

hypotheses, reviewing the outcomes, and testing new hy-
potheses or continuing their research strategy. In other in-
teractive exercises, students are often attempting to solve a
problem that has been posed for them and/or they are work-
ing with a smaller database. For example, in a data manage-
ment simulation, the student is executing specific role-re-
lated responsibilities in which the goal for the student or the
team is to enhance the economic status of an institution or
enterprise.

17.5.2 System Simulations

A system simulation demonstrates the functional relation-

ships between the components of a physical or biological

system (such as a small ecosystem) or a constructed system

(such as complex equipment systems). Students learn about

the particular system or solve problems involving the sys-

tem by manipulating the components.

One important role for the interactive graphics and video-

disc capability of current computer technology is to provide

functional representations of complex systems that students

can operate. An example is the steam plant system and sub-

systems developed for the U.S. Navy known as STEAMER.

The exercise also includes a quantitative component so that

the student can open and shut valves, turn components on

and off, adjust throttles, and observe the effects on indica-

tors, such as dials, thermometers, and digi-tal readouts

(Stevens & Roberts, 1983).

System simulations are often used to teach the operational

principles of complex equipment composed of subsystems.

They also are used to teach procedures and may, depending

on the design of the simulation, develop students’ cognitive

strategies. The use of a simulation to teach maintenance pro-

cedures, for example, is the procedural simulation referred

to by Riegeluth and Schwartz (1989).

Examples that develop students’ cognitive strategies are

the low-cost plywood Ml tank simulators and M2/3 fighting

vehicles, each with its own microprocessor database of the

terrain, graphics, and sound system developed in project

SIMNET. Each “armored vehicle” is a system that generates

the battle engagement enviromnent required for the combat

mission training of its crew. Each crew member sees a part

of the virtual world defined by his line of sight (e.g., forward

for the driver) (Alluisi, 1991, p. 350).

17.5.3 Process Simulations

The focus of a process simulation is a naturally occurring

phenomenon in the physical, chemical, or biological realm

(Riegeluth & Schwartz, 1987). Interactive graphics images

can illustrate processes that are unobservable and/or are not

easily experimented with in the classroom. Students can

manipulate variables and attempt different tasks in order (1)

to discover the relationships among the variables or (2) to

confront their misconceptions.

Confronting student misconceptions about Newtonian

mechanics is the goal of several process simulations devel-

oped in physical science (Flick, 1990; White, 1984). DiSessa

(1982, 1985) and others note that students’ intuitive knowl-

edge about force, motion, and velocity derived from experi-

ence in a gravity-bound world often prevents students’ con-

struction of accurate mental models of physics principles.

White (1984, 1995), for example, has designed several pro-

gressively more difficult gamelike tasks that require the stu-

dent to perform several actions on a “spaceship” in a fric-

tionless environment (space). Force, velocity, and speed are

illustrated in the interactive exercises.

DiSessa (1982) identifies three important contributions

of process simulations that represent physics principles. First,

they provide students an opportunity to interact with phe-

nomena at a qualitative level. Often, students only interact

with quantitative problems in which getting the right answer

typically becomes their goal. Second, students’ fragmented

and often naive knowledge of phenomena is challenged.

Third, simulations can change the time scale of exercises

from the 20 minutes or so per type to problems that can en-

gage students in investigations that can span days or weeks.

17.5.4 Laboratory Research Simulations

Laboratory-research simulations are specific to courses

that include laboratory sessions as part of the course work.

Among them are biology, chemistry, physics, and, occasion-

ally, physical science. These exercises provide visual and

graphic components for students to manipulate, and they il-

lustrate the results. Early examples of chemistry experiments

used color microfiche images projected onto the back of a

plasma panel with a PLATO IV system (Smith & Sherwood,

1976). Currently, computer laboratory simulations are mak-

ing use of videodisc technology to expand the range and

complexity of the experiments conducted by students.

These simulations differ from data-universe and process

simulations in that they are a series of discrete problems.

Because laboratory research exercises are a series of dis-

crete experiments instead of a complex evolving problem,

they are categorized by some theorists as problem-solving

exercises in a simulated context (Gredler, 1992a). Neverthe-

less, the computer videodisc simulations provide realistic

experimental reactions. Further, students can conduct experi-

ments that involve hazardous or costly materials. Also, slow

reactions that students may not ordinarily be able to observe

may be sped up (and others may be slowed down). More-

over, experiments can be repeated (Smith & Jones, 1989).



17.5.5 Discussion: Symbolic Simulation

Symbolic simulations may be developed at any of several

different levels of complexity. Data universe simulations are

the most complex, in which a large population of events is

represented and the causal models are quantitative. System

simulations are less broad and may involve either quantita-

tive or qualitative models of causality. Process simulations,

in contrast, typically address specific interactive processes

in the physical world that are often poorly understood by

students. In addition to biological processes, the interactions

of variables such as force, speed, and velocity are typical

examples. Causal models for process simulations also may

be quantitative or qualitative. Laboratory research simula-

tions, in contrast, involve a series of discrete activities that

are directed by students. Again, the causal models for the

specific experiments may be quantitative or qualitative (see

Table 17-3).

17.6 INSTRUCTIONAL DESIGN
IMPLICATIONS DERIVED FROM
RESEARCH

Many classroom games and simulations are developed for

a particular class, and the key design variables often are not

explicitly identified. Further, much of the research has in-

vestigated “variables of convenience,” i.e., attitudes and con-

tent-related achievement (Wentworth & Lewis, 1972). Nev-

ertheless, a few studies have investigated other effects of

games and simulations that have implications for design.

17.6.1 Academic Games

One of the stated requirements for academic games is

that advancement in the exercise and winning should be based

on academic skills. A study conducted by Schild (1966) tested

the premise that students learn those skills and strategies that

are reinforced by the structure of the game, i.e., the skills

essential for winning. He recorded the decisions made by

four groups of players of the Parent-Child game, in which

pairs composed of one parent and one child must negotiate

appropriate child behaviors on five issues. The “child” can

damage the “parent’s” score through consistent delinquency,

and the “parent” can damage the “child’s” score by exces-

sive control and punishment. However, by round 4 of the

game, most players had learned the optimal strategy essen-

tial to maximizing both the parent and child scores for their

team. In other words, the teams had learned the optimal strat-

egy for winning. The implication for game design is that

game structure should be carefully constructed so that win-

ning depends on strategies acceptable in the classroom and

knowledge in the subject area.

Several studies on the classroom game Teams-Games-

Tournaments (TGT) have implications for game design. A

unique feature of TGT is that it alters both the task and rein-

forcement structure of the classroom. Most classrooms are

highly competitive, with individual students competing for

scarce reinforcements (DeVries & Edwards, 1973; DeVries

& Slavin, 1978). In contrast, TGT introduces a cooperative

task structure within teams and increases greatly the avail-

ability of reinforcement.

TABLE 17-3. SUMMARY OF SYMBOLIC SIMULATIONS

Quantitative or qualitative To discover relationships
among the variables and/or
to confront misconceptions

Laboratory research A series of student directed
discrete experiments in
simulated environments

Data universe

System

Quantitative or qualitative

Process

To become proficient in
conducting specific
experiments, documenting
results, and conclusions

Quantitative or qualitative To explain or predict events
in the system

Quantitative To develop mental models
about the interrelationships
of variables and test the
models

Represents a large
population of events; may
be individual or team based

Demonstrates the functional
relationships between the
components of a physical or
biological system or a
constructed system (such as
complex equipment
systems)

Represents specific interac-
tive processes in the
physical world

Type                            Structure Underlying Model Task



TGT organizes the class into teams of comparable

achievement (e.g., one high achiever, two average achiev-

ers, and one low achiever), but each student competes at a

three-person tournament table with students at the same abil-

ity level. Each student’s score contributes to the overall team

score. (Scores earned at the tournament are 6 points, high

scorer; 4 points, middle scorer; and 2 points, low scorer.)

Practice sessions also are scheduled a few days prior to the

weekly or biweekly tournament.

Because the team score is dependent on the performance

of all the team members, the game structure reinforces peer

tutoring and cooperative learning during the practice ses-

sions. In one study, the games/teams combination increased

the amount of peer tutoring beyond that in either games/ in-

dividual reward or quizzes/team reward classes (DeVries &

Edwards, 1973). Classes that participated in TGT (team re-

ward) also perceived a decrease in both classroom competi-

tiveness and course difficulty (measured by the Learning

Environment Inventory, LEI). The researchers suggest that

these perceptions are the result of the task interdependence

of the game and the increased opportunities for reinforce-

ment.

A review of 10 studies in which TGT was implemented

in mathematics, language arts, and social-studies classes in-

dicated consistent effects on achievement (measured by stan-

dardized tests) and mutual concern (measured by question-

naire scales adapted from the Learning Environment Inven-

tory). Some of the studies compared TGT to regular class-

room instruction, and others compared TGT to the traditional

classroom and a modification of TGT in which higher- or

lower-scoring students’ scores were weighted more heavily.

However, the modifications did not produce a greater effect

on achievement than the original TGT.

Of importance for game design in general is the relation-

ship between competition and cooperation. Competition is

the essence of any game. However, the mutual dependence

of students on each other reinforces cooperation, an impor-

taint characteristic of a positive classroom environment.

17.6.2 Computer Games

A key issue in manual games is the influence of a game

on classroom dynamics. In contrast, key issues in computer-

delivered games are the mechanics of play and the obser-

vance of accepted instructional design principles. Many com-

puter-delivered games, however, have not been developed

by instructional designers. Instead, like the programmed in-

struction movement of the 1960s, various other groups have

developed many of the products. Often, the computer soft-

ware has not undergone formative or summa-tive evalua-

tion, Although reviews of software are available, few review-

ers implement the materials with students. Moreover, evalu-

ation checklists do not require the reviewer to conduct ob-

servations of student use (Vargas, 1986).

Observations of students using computer software indi-

cate some problems with computer games in both game

mechanics and principles of instructional design (Vargas,

1986; Gredler, 1992a). Briefly summarized, the game me-

chanics problems include inappropriate vocabulary for young

students, inadequate directions, lengthy texts, and multistep

directions with no opportunity for student practice and inap-

propriate use of graphics (Vargas, 1986; Gredler, 1992a). In

addition, computer games often do not provide options for

students to bypass tasks that are too complex or bypass items

they are unable to answer. Since the only way for the player

to continue in the game is to strike a key or type in a word,

players are forced to enter random answers, which, of course,

are evaluated by the computer as wrong (Gredler, 1992a).

In addition to the mechanics of play, frequent observa-

tions of students using computer software indicate two in-

structional design problems. They are (1) inadequate stimu-

lus control and (2) defective reinforcement contingencies.

For example, the use of a question with several possible an-

swers in which only one answer is accepted by the computer

penalizes the student who selects a correct answer that is not

included in the program. The task stimulus in such situa-

tions is inappropriate.

Two types of defective reinforcement contingencies have

been observed during student use of computer software. First,

the game or other exercise is often delayed because the key-

board is locked while stars twinkle, trains puff across the

screen, or smiley faces wink or nod (Vargas, 1986, p. 75). A

more serious problem occurs when the consequences that

follow wrong answers are more interesting than the feed-

back for correct answers. In one computer exercise, for ex-

ample, a little man jumps up and down and waves his arms

after a wrong answer. Students, instead of solving the prob-

lems for the correct answers, randomly enter any answer in

order to see the little man jump up and down (Gredler, 1992a).

Potential users of classroom computer games, therefore,

should carefully review the exercises for several likely flaws.

They are inappropriate vocabulary, too lengthy text, inad-

equate directions and branching, inadequate stimulus con-

trol, and defective reinforcement contingencies.

17.6.3 The Mixed—Metaphor Problem

Games are competitive exercises in which the objective

is to win, and experiential simulations are interactive exer-

cises in which participants take on roles with serious

decisionmaking responsibilities. However, some developers

have attempted to mix the two perspectives by assigning

participants serious roles, placing them in direct competi-

tion with each other, and identifying the participants as win-

ners or losers according to the individual’s or team’s perfor-

mance. These exercises are sometimes referred to as simula-

tion games and gaming simulations.

Games and experiential simulations, however, are differ-

ent psychological realities, and mixing the two techniques is

a contradiction in terms. Such exercises send conflicting



messages to participants (Jones, 1984, 1987). They also can

lead to bad feelings between participants who address their

roles in a professional manner and those who treat the exer-

cise as “only a game” (Jones, 1987).

Many exercises that otherwise would be classified as data

management simulations are mixed-metaphor exercises. That

is, student teams that each manage a “company” are placed

in direct competition with each other with profitability as

the criterion for winning. For example, in the Business Policy

Game, the winning firm is the one with the highest return on

investment. Further, in many classes, from 10% to 50% of

the student’s course grade depends on the team’s perfor-

mance.

Several problems recently have been identified with these

exercises. Lundy (1985) observed that sometimes a team that

is not doing well in later rounds attempts to “crash the sys-

tem.” Seeing no way to win, team members behave like game

players and behave in such a way as to prevent others from

winning. Other desperation plays are charging an astronomi-

cal price for a product in hopes of selling a few, and end-of-

activity plays, such as eliminating all research and develop-

ment or ordering no raw materials (Teach, 1990). Some

teams, however, view the exercise as simply a situation in

which to show their prowess. Golden and Smith (1991) de-

scribe these teams as “dogfighters” because their behavior

resembles that found in the classic World War II aviation

dogfight.

The major problem with such exercises, however, is that

competition in the business world does not routinely result

in one company’s being declared a winner while others en-

ter bankruptcy (Teach, 1990). Instead, companies strive for

market share and alter their strategies based on feedback

about market conditions and the success of their earlier ef-

forts. Thus, the focus on being “the winner” distorts the simu-

lation experience.

Some researchers have investigated the factors that con-

tribute to team success in these exercises. Gentry (1980) in-

vestigated the relationships between team size (three to five

members) and various attitudinal and performance variables

in three undergraduate business classes. However, of the

variables entered into the stepwise regression equation to

predict team standing, he found that group performance was

predictod better by the ability of the best student in the group

rather than by a composite of the group’s abilities. Thus,

group performance was more a function of a group leader

rather than knowledge and ability of group members.

In addition, Remus (1977) and Remus and Jenner (1981)

found a significant correlation between the student’s enjoy-

ment of the exercise and final standing of their teams. Sev-

eral students in one study also disagreed with statements that

the exercise was a valuable experience and represented real-

world decision making (Remus & Jenner, 1981). In sum-

mary, the observations of Teach (1990), Golden and Smith

(1991) and Lundy (1985), and the findings of Remus and

Jenner (1981), lend support to the findings of Schild (1966).

Specifically, students will tend to enact those behaviors that

are reinforced by winning. In simulation games, these ac-

tions may be counterproductive to the expected learning.

17.6.4 Experiential Simulations

The student in an experiential simulation takes on a seri-

ous role in an evolving scenario and experiences the privi-

leges and responsibilities of that role in attempting to solve

a complex problem or realize a goal. Four major types of

experiential simulations are data management, crisis man-

agement, and diagnostic and social-process exercises. Of

these four types, crisis management simulations are devel-

oped to meet preestablished criteria regarding the nature of

the crisis and expected student reactions. Data related to the

development of these exercises typically are not reported for

public consumption. Moreover, data management and so-

cial-process simulations often (1) are not standardized exer-

cises and/or (2) do not provide student data other than post-

test achievement on some instructor-developed instrument.

Many diagnostic simulations, in contrast, are standard-

ized situations in which optimal sequential decisions in rela-

tion to the evolving problem have been identified. Further,

research conducted on the analyses of problem-solving de-

cisions in diagnostic simulations can serve as a model for

analyzing students’ cognitive strategies in other types of simu-

lations. The first step is the evaluation of the range of pos-

sible decisions at each decision point by a group of experts.

Each decision is classified in one of five categories that range

from “clearly contraindicated” to “clearly indicated and im-

portant,” and a positive or negative weight (e.g., - 1 to -3 or

+1 to +3) is assigned to each decision (McGuire & Babbott,

1967, p. 5). Then, the combination of choices that represent

a skilled decision-making strategy are summed for a total

numerical score. When the simulation is administered, the

numerical score of each student decision is recorded. The

extent of congruence between the student’s total and the ex-

pert decisions is referred to as a proficiency score.

A study of the problem-solving skills in simulations with

186 fourth-year medical students analyzed students’ profi-

ciency scores and revealed four different problem-solving

styles (McGuire & Bashook, 1967). The high scorers included

two groups identified as (1) thorough and discriminating and

(2) the “shotgun” group. Although both groups earned total

problem-solving scores between 32 and 60, the “shotgun”

group made many choices that were not warranted (high er-

rors of commission). Similarly, two problem-solving patterns

were identified in the low-scoring group (scores below 30).

One, the constricted group, chose few desirable or undesir-

able actions. In contrast, the other group, the random prob-

lem solvers, chose few desirable actions, but they also chose

many actions that were not warranted.

This method of analyzing the specific characteristics of

student performance in diagnostic simulations is applicable

to other types of simulations that address problem-solving



strategies. First, optimal strategies through the complex task

or problem are identified. Other plausible steps are then

weighted according to the extent to which they are neutral

(do not advance the problem solution) or are debilitating.

Finally, the number of debilitating decisions made by both

high and low scorers is tabulated to identify the problem-

solving pattern.

Given the recent emphasis on students’ constructing

knowledge during learning, this model or a similar one can

provide information to teachers about specific student diffi-

culties. Also, the computer can tabulate both total and com-

ponent scores on students as they work through the exercise.

17.6.5 Symbolic Simulations

A symbolic simulation is a dynamic representation of a

universe, system, process, or phenomenon by another sys-

tem. The behavior that is simulated involves the interaction

of at least two variables overtime. The student interacts with

symbolic simulation from the outside, unlike the experien-

tial simulation. The types of symbolic simulations are data

uni-verse, system, process, and laboratory-research simula-

tions.

17.6.5.1. Data Universe Simulations. At present, few data

universe simulations have been developed for instructional

purposes. One example, however, is Jungck and Calley’s

(1985) Genetics Construction Kit (GCK). The software con-

sists of two parts. One is a data universe that includes the

complex behavior of 10 phenomena in classical Mendelian

genetics. Operations that may be performed on this universe

include crosses, comparisons of parental and filial genera-

tions, Chi-square analyses, and building up the number of

progeny through successive experiments (Jungck & Calley,

1985). The second part develops “populations of organisms”

for study that include combinations of the phenomena in the

data universe (Stewart et al., 1992).

One study implemented GCK in the first 5 weeks of a 9-

week high school genetics course. Students first completed

an activity in which they built models to explain a “black-

box” situation and then discussed the adequacy of their mod-

els for explaining the data. They worked in groups to re-

search prob-lems generated by GCK by building and testing

models that appeared to explain the data (Stewart et al., 1992).

After 3 weeks, the researchers selected six students who

had a good understanding of simple dominance and meiosis

models. These students were presented individually with

subsequent problems the others were studying in groups for

6 class days. Detailed analyses of their computer records and

audio recordings of their “-aloud” strategies indicated sev-

eral findings. First, students revised their original explana-

tory models in most of the problems they encountered. Sec-

ond, all but three of the final models were compatible with

the data. Of these, half represented accepted scientific theory,

and half represented an alternative perspective.

Third, and of primary importance to instructional design,

the researchers documented a detailed and involved model-

building process used by the students (see 12.3.1.1, 24.3.1).

Among the actions initiated by the students were conduct-

ing experiments within the given field population, using an

existing model to explain features of the data, using limita-

tions of the proposed model to identify other possible causal

factors, and bracketing cases of interest as a first step in re-

vising the proposed model. Identification of the steps used

by students in conducting research with other data universe

simulations is a first step in developing instructional strate-

gies for these simulations.

The variety of strategies that may be implemented by stu-

dents when faced with a complex problem is illustrated by

two different implementations of the genetics simulation

CATLAB (Kinnear, 1982). The exercise permits students to

construct a population of nonpedigree cats (up to 91 cats)

and then to breed any two of the cats for any number of

litters. In constructing the experimental population, the stu-

dent chooses gender, tail or no tail, and color for each cat. If

nonwhite is first chosen, then several options follow for both

color and pattern. After the students complete their selec-

tions, the Apple II program provides rather stilted color im-

ages of the student’s choices and the resulting litters.

One biology teacher reported that her students tended to

breed cats without a plan (Vargas, 1986). The range of mixed

characteristics in the resulting litters made it impossible for

students to observe the relevant genetic principles. In addi-

tion, one student set about producing as many different-look-

ing cats as possible. Vargas (1986, p. 742) concluded that

the simulation by itself was no better than leaving a student

unsupervised in a science laboratory to proceed by trial and

error.

In contrast, Simmons and Lunetta (1993) implemented a

three-part instructional strategy with three expert and eight

novice problem solvers using CATLAB. The subjects were

first directed to explore various traits with cats. In phase 2,

the researcher had a brief discussion with each subject about

his or her actions and rationale. Phase 3 required the sub-

jects to investigate and determine the inheritance pattern of

the orange and tabby striping trait.

The original intent of the study was to identify differences

between expert and novice problem solvers in their interac-

tions with the simulation. However, this dichotomy was too

restrictive to explain the patterns of problem solving found

in the data (Simmons & Lunetta, 1993). Instead, three levels

of problem-solving performance were found. The highest

level, successful problem solvers, consisted of two experts

and two novices. This group (1) used systematic procedures,

(2) developed valid reasons for their results, and (3) gener-

ated correct answers. They also had the highest percentage

of correct responses (75%—100%). The second level, the

transitional or less-successful problem solvers, consisted of

one expert and three novices. Of their responses, 60% to

70% were correct. This group also used less-systematic pro-

cedures and generated some invalid explanations. In addi-

tion, they did not rule out alternative explanations that could



account for their conclusions. The third level consisted of

the unsuccessful problem solvers (five novices). These stu-

dents exhibited the most random approaches to the problem

and did not use valid scientific explanations. They typically

used circular definitions to justify their actions (Simmons &

Lunetta, 1993). From 35% to 45% of their responses were

correct.

Analysis of the videotapes of the subjects indicated that

successful problem solvers applied integrated knowledge

during the process. Unsuccessful subjects, however, were

unable to use domain-specific knowledge to describe their

observations and were unable to detect the features of genet-

ics concepts and principles in the data (Simmons & Lunetta,

1993). They also exhibited misunderstandings about the na-

ture of probability. The findings of the study, which indicate

three levels of problem solving, suggest that successful per-

formance requires more than an advanced knowledge of the

subject matter (Simmons & Lunetta, 1993). That is, both

novices and experts exhibited a variety of strategies that

ranged from least to most successful.

Data universe simulations lend themselves to several types

of cognitive tasks. However, they are likely to be unsuccess-

ful unless students have developed a systematic strategy for

approaching the task and also are able to apply an integrated

knowledge base of concepts and principles.

17.6.5.2. System Simulations. Developers of complex

equipment simulations typically establish performance stan-

dards for students and refine the simulation until those stan-

dards are met. Essential terms and definitions are typically

taught prior to student engagement with the simulation.

Developing the skills of analysis and prediction in other

system simulations with several variables presents a differ-

ent instructional design problem. Students’ prediction skills

in relation to one system, water pollution, were investigated

by Lavoie and Good (1988). In the system, five variables

(temperature, waste type, dumping rate, type of treatment,

and type of body water) affected oxygen and waste concen-

tration of the water.

Arter a short period to explore the simulation, the 14 stu-

dents read background material on water pollution that de-

scribed some of the effects among the variables. They next

worked through several exercises with the computer simula-

tion which involved choosing preselected parameters and

observing the effects on a given dependent variable. The stu-

dents then were given three prediction problems to solve.

Problem-solving ability on the prediction problems was

related to three factors: high or moderate initial knowledge,

high academic achievement, and cognitive performance at

the Piagetian stage of formal operational thinking. Unsuc-

cessful students tended to have both low initial knowledge

and low academic ability and to be at the Piagetian stage of

concrete operational thinking.

One of the key differences between the Piagetian stages

of concrete and formal reasoning is that concrete thinkers

typically are able to manipulate systematically only one or

two variables at a time. Given a more complex situation,

they change several independent variables at a time and,

therefore, cannot observe the effects of any one variable

(Piaget, 1972; Gredler, 1992b). In contrast, formal opera-

tional thinkers are capable of developing hypotheses that

systematically test the influence of several variables on an

outcome. Analysis of the videotapes of the students confirmed

that they executed the strategies consistently with their level

of Piagetian reasoning.

In addition, the unsuccessful students expressed dissatis-

faction and lack of interest at various times during the learn-

ing sequence (Lavoie & Good, 1988, p. 342). They also con-

ducted, on average, 50% fewer simulation runs, took fewer

notes than successful students, and spent less time review-

ing and evaluating their predictions than the successful sub-

jects. Further, a postexercise interview revealed that the un-

successful students had more misconceptions about solubil-

ity and the relationships among oxygen, bacteria, and waste

than the successful students.

The researchers also identified 21 behavioral tendencies

that differed between successful and unsuccessful problem

solvers. Others, in addition to those already mentioned, are

that successful problem solvers made fewer errors in read-

ing graphs, relied on information learned during the lesson

to make predictions, and understood the directions and in-

formation in the lesson. The implications for instructional

design are clear. Systems in which several independent vari-

ables influence the values of two or more dependent vari-

ables are complex situations for students. Simulations of such

systems should include preassessments of students’ level of

both Piagetian thinking and knowledge level. Students at the

concrete level of thinking and/pr with low subject knowl-

edge should be directed to other materials prior to interact-

ing with the simulation. Like the data universe simulations,

a requisite skill is the capability of applying an integrated

knowledge base to an unfamiliar situation.

17.6.5.3. Process Simulations. Often, naturally occurring

phenomena are either unobservable or are not easily subject

to experimentation. Examples include Newton’s laws of

motion, photosynthesis, and complex atomic reactions. Pro-

cess simulations that can use symbols to represent the inter-

actions of unobservable variables and which are subject to

student manipulation can be useful instructional devices.

White (1984) designed and tested a series of exercises

using symbols to confront students’ misconceptions of

Newton’s laws of motion and conservation of momentum. A

series of 10 exercises was designed that required students to

conduct progressively more difficult operations on a space-

ship in outer space (frictionless environment). Among the

misconceptions addressed by the exercises is the intuitive

belief that objects always go in the direction they are kicked

(White, 1984).

Thirty-two students who had studied PSSC physics par-

ticipated in the study. The 18 students in the experimental



group and the 14 students in the control group did not differ

significantly on the pretest problems. From 1/3 to 1/2 of the

students demonstrated misconceptions about the effects in

some of the basic questions. Posttest data indicated that the

group that interacted with the simulation significantly im-

proved their performance.

However, on the exercise involving prediction of the ef-

fects of an orthogonal impulse, the simulation exercise led

to as many students changing from right pretest answers to

wrong posttest answers as changed from wrong to right.

Further, many of the exercises could be solved by simple

heuristics, such as, “if one impulse (force or thrust) is not

enough, try two” (White, 1984). The use of such strategies

supports Kozma’s (1992) concern that abstract symbols may

not have a referent in another domain for the students (p.

206). That is, students may learn to operate directly on the

objects without developing an understanding of the underly-

ing principles.

Among the subsequent improvements to the exercise

(White, 1994) are (1) additional structure, including “laws”

to be tested in the simulation, (2) the addition of real-world

transfer problems, and (3) the inclusion of other symbols to

focus on important concepts. An example of an additional

symbol is the use of a “wake” behind the spaceship to illus-

trate a change in velocity. Kozma (1992) reports that White

(1994) found significant improvement on the transfer prob-

lems and significantly higher performance of students in a

2-month curriculum using the simulation than students in

two regular physics classes.

A long-standing problem in education is the issue of over-

coming students’ misconceptions that are based on their lim-

ited everyday experience and intuitions. That is, students may

be able to verbalize a phenomenon accurately, but when faced

with a real-world problem, they revert to out-of-school

knowledge as a basis for conceptualizing the situation

(Alexander, 1992). Process simulations can be a powerful

instructional tool to provide the repeated experiences that

Piaget (1970) first identified as essential in overcoming these

problems. However, careful attention to both symbol selec-

tion and links to laws and principles is required.

17.6.5.4. Laboratory Research Simulations. Laboratory

research simulations consist of a series of discrete qualita-

tive and quantitative experiments that students may direct in

a specific subject area. Several studies have compared com-

puter-based simulations with “wet labs” in chemistry and

biology courses. The results, however, are confounded by

one group or the other receiving extra materials, such as sum-

mary sheets, or written problems to solve following instruc-

tions.

One development, however, is a series of experiments for

introductory college chemistry courses. The experiments

were revised based on student comments during formative

evaluation and then placed into a comparison group pilot

study. The laboratory simulations use a single-screen sys-

tem that permits computer text and graphics to be superim-

posed on video images. Components of the system are a per-

sonal computer, a video interface card, a videodisc player,

and a television monitor. This system is more expensive than

other configurations; however, an advantage is that students

can respond to text questions while the images remain on

the screen.

In the pilot study, 103 students were randomly assigned

to a lab-only group, videodisc-only group, or videodisc-plus-

lab group. Six interactive videodisc workstations were avail-

able on a self-scheduled basis for the students using the com-

puter software. On a brief seven-point posttest, the differ-

ence between the means of the videodisc group and the labo-

ratory group was 1.03 standard deviation units. Significant

differences were also found between the means of the anony-

mously graded laboratory reports (videodisc-plus-lab = 31.04

and lab-only = 26.44). Also, students in the laboratory group

were more likely to rely on the rote citation of examples in

the lab manual even when these examples did not fit the data

(Smith, Jones & Waugh, 1986).

17.6.6 Discussion

Research on games and simulations indicates three major

areas that are essential for effective design: (1) the task-rein-

forcement structure, (2) the role of prior knowledge, and (3)

the complexity of problem solving.

17.6.6.1. Task Reinforcement Structure. Both games and

simulations alter the reinforcement structure of the classroom

because they expand the opportunities for students to earn

reinforcement. Because winning is a powerful reinforcer,

games must be carefully designed so that inappropriate strat-

egies are not learned. Although teams-games-tournaments

reinforces cooperation and peer tutoring, other games rein-

force guessing and the selection of wrong answers.

The major task for game players is to win, whereas the

task for simulation participants is to execute serious respon-

sibilities identified by the nature of the simulation (experi-

ential) or by the accompanying instruction (symbolic simu-

lation). To mix games and simulations establishes conflict-

ing tasks, i.e., defeating other participants or executing a role

with identified responsibilities.

In contrast, experiential simulations establish particular

tasks or goals for participants and provide contingencies in

the form of changes in the complex problem or the actions

of other participants. Designers of symbolic simulations,

however, face particular problems. That is, simply provid-

ing a data universe, a system, or interacting processes is a

necessary but not sufficient condition for a successful or

meaningful problem-solving experience. For example, if the

student’s decisions result in a colorful screen display, the

exercise reinforces random search strategies as well as

thoughtful student choices.

Moreover, in the absence of prior instruction on conduct-

ing research in multivariate open-ended situations, some stu-

dents will be unsuccessful. As indicated in one study, the

unsuccessful students became frustrated and lost interest.



Instead of a reinforcing exercise, the simulation becomes a

form of punishment for the student’s effort. One solution is

to teach model-building strategies so that students become

proficient in using them to solve broad open-ended prob-

lems. Another is to program the exercise such that random

selection of variables initiates a message that suspends the

simulation and routes the student to particular information

sources for assistance, such as the teacher or particular in-

structional materials.

17.6.6.2. The Role of Prior Knowledge. Although the

research on data universe, system, and process simulations

is limited, the studies indicate the importance of prior knowl-

edge on successful performance. Prior achievement level

typically serves as an indicator of prior knowledge; how-

ever, this variable alone is insufficient to predict problem-

solving performance. The research identifies two types of

prior knowledge that appear to be essential in some simula-

tions. One is domain-specific knowledge that must be inte-

grated into a coherent whole. (Fragmented or partial knowl-

edge is insufficient.) In one study, for example, unsuccess-

ful students held several misconceptions about key topics.

A second type of knowledge essential for success is a sys-

tematic strategy for addressing a multifaceted situation. Stu-

dents who had been taught to use models to explain data and

to revise their models to account for new data were success-

ful in conducting genetics research in a data universe simu-

lation.

The capability of developing hypothetical models of a

complex situation was found to be important in another study.

In a system simulation involving the interactions of several

variables, formal Piagetian reasoning (as opposed to con-

crete reasoning) also was found to be essential. Of interest is

that formal operational thinkers are capable of developing

hypothetical models that are then tested systematically. In

contrast, concrete operational thinkers can successfully ma-

nipulate only one or two variables at a time.

The implication for instructional design is that the identi-

fication of essential prerequisites, long an important design

principle, involves at least two areas for some simulations.

First, major concepts in the subject domain that are essential

to manipulating variables or conducting research using the

simulation should be identified. Level of academic achieve-

ment or a description of completed courses is insufficient to

indicate essential prerequisite knowledge. In other words,

variables identified in artificial-intelligence approaches to

computer-based learning—i.e., problem-solving skill, apti-

tude, and ability (Tennyson & Park, 1987)—must be speci-

fied for the different types of simulations.

Second, the level of the task in terms of the number and

nature of the variables to be manipulated also should be iden-

tified. Simulations that illustrate the interactive effects of

several variables are more complex in terms of the reason-

ing strategies required for student success. Prior instruction

in systematically manipulating variables may be required.

17.6.6.3. The Complexity of Problem Solving. Under-

standing problem solving in a variety of contexts is a major

focus in cognitive theories of learning (Gredler, 1992b).

Research on simulations suggests implications for these per-

spectives. One theoretical perspective, Gagne’s conditions

of learning, identifies five distinct categories of learning that

differ in instructional requirements for successful learning.

One of these domains is cognitive strategies, which consists

of the skills essential to the student’s management of his or

her thinking and learning (Gagne, 1977, 1985). Cognitive

strategies, however, may vary widely among students. Analy-

ses of students’ decisions in a diagnostic simulation, for ex-

ample, indicated that successful students ranged from thor-

ough and discriminating to the “shotgun” group, which chose

many unwarranted actions. Analyses of students’ strategies

in a data universe simulation indicated 21 behavioral ten-

dencies that differed between successful and unsuccessful

problem solvers.

Another concern in terms of strategies acquired by the

learner is that situational heuristics rather than generalizable

principles may be learned. Thus, simulation design must in-

corporate links to the relevant theoretical framework.

Information-processing theories, another cognitive per-

spective, focus on the differences between expert and nov-

ice problem solvers. Research in several subject areas has

identified general characteristics of both types of problem

solvers (see Glaser & Chi, 1988). The expert/novice di-

chotomy, however, may oversimplify differences among in-

dividuals. One study, for example, found a continuum of

capabilities from least to most successful that varied along

the dimensions of (1) extent of integrated knowledge and

(2) level of strategic reasoning.

A third cognitive development is that of constructivism

(see Chapter 7). At present, no single constructivist theory

of instruction has been developed (Driscoll, 1994). A basic

tenet of constructivism, however, is that knowledge is a con-

struction by the learner. That is, the learner interprets infor-

mation in terms of his or her particular experience and con-

structs a knowledge base from these interpretations.

Beyond this common tenet, constructivism is interpreted

by different proponents in somewhat different ways. Two of

these views are particularly relevant for simulations. One

view is based in part on Piaget’s (1970) theory of cognitive

development, which states that logical thinking develops from

(1) the learner’s confrontation with his or her misconcep-

tions about the world and (2) the resulting reorganization of

thinking on a more logical level. Thus, instruction should

place learners in situations in which they must face the in-

consistencies in their naive models of thinking. The process

simulation discussed earlier that incorporates principles of

Newtonian mechanics is an example.

Another perspective in constructivism is the view that

authentic tasks with real-world relevance and utility should

replace isolated decontextualized demands (Brown et al.,

1989; Jonassen, 1991; Driscoll, 1994). Such tasks are par-



ticularly important in ill-structured domains such as medi-

cine, history, and literature interpretation in which problems

or cases require the flexible assembly of knowledge from a

variety of sources (Spiro et al., 1991). Examples are diag-

nostic simulations in which students face complex, authen-

tic, and evolving problems that they must attempt to under-

stand and manage to a successful conclusion. Some data

universe and system simulations, if accompanied by appro-

priate instruction, can also address the requirements of this

constructivist view.

One concern that has been raised in relation to placing

students in complex situations requiring many steps is that

such tasks may overwhelm the less-capable learner (Dick,

1991, p. 42). In other words, the gap may be too great be-

tween the learner’s capabilities and the tools and informa-

tion provided in the exercise. The system simulation on wa-

ter pollution is an example. The unsuccessful students lacked

both basic knowledge related to the situation and systematic

strategies for addressing multifactor problems, and expressed

dissatisfaction and lack of interest several times during the

activity.

In summary, the research on simulations indicates the

varieties of cognitive strategies enacted by students in com-

plex situations, and the range of differences between expert

and novice problem solvers, and it offers a mechanism for

empirically validating major concepts in constructivism.

17.7 RECOMMENDATIONS FOR FUTURE
RESEARCH

Early research on games and simulations typically com-

pared the particular interactive exercise with regular class-

room instruction on information-oriented achievement tests.

These “apples and oranges” comparisons did not yield de-

finitive information about the effectiveness of the innova-

tions. Further, key processes in the innovation often were

not documented, student characteristics that may interact with

the exercise in different ways were not investigated, and out-

come measures often were poorly described.

Conducting definitive research on games and simulations,

however, requires more than the specification of additional

variables and the description of student interactions and out-

come measures. Specifically, if an exercise is poorly de-

signed, documentation of implementation and outcomes con-

tributes little to an understanding of the potential of the in-

novation (Gredler, 1996). A three-step strategy is essential

to conducting useful research on games and simulations. The

steps are: (1) Document the design validity of the innova-

tion; (2) verify the cognitive strategy and/or social interac-

tion processes executed by students during the exercise in

small-group tryout (formative evaluation) and redesign where

necessary; and (3) conduct follow-up research on specific

processes and effects (see Chapters 39 to 42 for specific ap-

proaches to research).

17.7.1 Document Design Validity

Several issues important in design validity for both games

and simulations are: (1) a reliance on a knowledge domain

and subject-area expertise, (2) the exclusion of chance or

random strategies as a means to success, and (3) the avoid-

ance of mixed-metaphor exercises and zero-sum games.

Particularly important for simulations is the analysis of

the mode of delivery and the causal model for events in the

exercise. Specifically, social-process simulations cannot be

delivered by the computer; however, any of the symbolic

simulations are legitimate computer-based exercises.

The causal model for the simulation, whether quantita-

tive or qualitative, should reflect verifiable processes and

interrelationships, not random events. Some early comput-

er-based exercises inadvertently established Russian-roulette

situations for students in which the criteria for successful

management are unknown to the participants. Students re-

peatedly assign values to a limited number of variables in

the absence of a knowledge base and await the outcome. In

such exercises, the students play against the odds established

by the house (the computer program) instead of a real-world

causal model (Gredler, 1992a).

Often, careful analysis is required to identify these vari-

able-assignment exercises. An example is Lemonade Stand.

First, students repeatedly assign values to only three vari-

ables. Thus, the same limited number of decisions is made

again and again. The three variables are: (1) the number of

glasses of lemonade one wishes to sell, (2) selling price per

glass, and (3) amount of advertising expenditures. After stu-

dents input their selections, the program compares them with

the preprogrammed model and informs them of the amount

of profit or loss for that day. Sometimes this figure is accom-

panied by the statement that the weather was cloudy and

rainy that day; thus, little or no profit was earned.

The inadequacy of the causal model also is noted by Var-

gas (1986). The exercise omits important considerations, such

as the components of the lemonade (how much sugar and

lemon to use in the brew), location of the stand, and the fact

that few people would set up a stand in rainy weather. Thus,

the exercise leads the prospective user to expect more than it

delivers (p. 742). Further, the exercise is simply a guessing

game for students as they attempt to discover the variable

weightings that were selected by the programmer.

A much more useful exercise would be one that engages

the students in planning for a lemonade stand in which

weather data for past years as well as information on pedes-

trian traffic patterns, costs of resources, and so on are avail-

able. In this way, students’ cognitive strategies may be fa-

cilitated.

17.7.2 Verification of Cognitive Strategy and/or
Social Interaction Processes

A game or simulation that meets design criteria should

then be implemented with a small group of students to deter-



mine the actual behaviors that it precipitates. This practice is

a long-standing and accepted tenet of instructional design.

However, many computer products marketed for schools do

not undergo this test of effectiveness.

Important information can be obtained in tryouts of a game

or simulation with answers to these questions: Do the stu-

dents become frustrated and lose interest because the exer-

cise is too difficult for them? Does success depend on skills

other than those intended by the designers? What unantici-

pated behaviors do students execute during the exercise?

What are learner attitudes toward the game or simulation?

Particularly important is the issue of task difficulty. A sym-

bolic simulation that challenges the learner’s naive concep-

tions or requires sophisticated research strategies beyond the

learner’s level of expertise is one that places high cognitive

demand on the learner. Such a situation, in which the learner

may be thrashing around with few resources for resolution,

may generate reactions such as, “Why don’t you just tell me

what you want me to know?” (Perkins, 1991, p. 20).

Small-group tryout, in other words, is essential for deter-

mining whether intended processes and effects occur and

the nature of unintended effects. Logistical difficulties in

implementing the exercise also may be identified.

The researcher or designer then makes adjustments in the

context for implementation, support materials for the exer-

cise, or level of prerequisite knowledge and strategy use

specified for the exercise, and implements the game or simu-

lation with another small group. One alteration for a sym-

bolic simulation, for example, may be to implement the ex-

ercise with a two-member team rather than as an individual

exercise. In an experiential simulation, penalties for certain

irresponsible actions may be added or the rules altered in

order to deter unethical behavior.

17.7.3 Conduct Follow-up

Experiential exercises that meet design and formative

evaluation criteria may then be further tested in group imple-

mentations. However, the type of research that is conducted

on the exercise depends in part on the nature of the exercise

and the purpose for which it was developed. Exercises that

are designed to develop particular skills and capabilities tra-

ditionally provided by an existing instructional approach may

be compared for effectiveness to that approach. For example,

laboratory research simulations were developed for a viable

option to the traditional “wet-lab” experience. In such a situ-

ation, comparisons of student performance between the com-

puter-based and laboratory-based experiments on laboratory

reports and posttests are logical. Also, system simulations

that substitute learner operation of system components by

computer-managed videodiscs may be compared to equip-

ment-based instruction.

Similarly, business colleges often implement both data

management simulations and case studies to provide students

with experience in managing the finances of a company.

Given similar goals, comparison research with these two

types of exercises is legitimate. However, an important com-

ponent of the research is to identify the types of student abili-

ties, attitudes, and skills that interact with the exercises.

Other simulations, in contrast, typically address an instruc-

tional need that is not currently met by other forms of in-

struction. Diagnostic simulations, for example, were devel-

oped originally to bridge the gap between course work and

hospital internships for medical students. Also, data universe

and process simulations provide opportunities for stu-dents

to conduct extended research and to confront their miscon-

ceptions and inadequate mental models. Such opportunities

are not available in typical instructional situations.

For such simulations, a series of related exploratory stud-

ies is needed to determine the range and variety of reasoning

and thinking strategies implemented by students and the ef-

fects. This research can make use of both quantitative and

qualitative data. Pretests of domain knowledge and rea-soning

skills may be administered and then matched to the prob-

lem-solving strategies used by the students during the simu-

lation and to other information to develop profiles of student

interactions with these complex exercises.

Qualitative data in the form of analyses of students’ prob-

lem-solving efforts may be obtained by (1) requesting stu-

dents to verbalize their thoughts as they work through the

exercise and by (2) videotaping the sessions. Transcriptions

of the videotapes are then analyzed and coded to identify the

specific steps implemented by each of the students.

Semistructured individual interviews with students after their

session(s) with the simulation can shed light on their

noncognitive reactions to the experience.

Such research is time consuming and painstaking. How-

ever, strategy-based games and experiential and symbolic

simulations offer opportunities for learning that are qualita-

tively different from those of direct instruction. The chal-

lenge is to develop the associated knowledge base for com-

plex student-directed learning.
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