
5.1   INTRODUCTION

The purpose of this chapter is to discuss some of the devel-

opments in cognitive psychology that have been influential

in educational technology research. Since cognitive psy-

chology is a broad, eclectic, and sometimes elusive disci-

pline, this chapter is of necessity selective. Nonetheless, it

provides discussion of the most important research in cogni-

tive psychology that has a bearing on the theory and practice

of educational technology.

Educational technology came of age as a discipline at a

time when relevant psychological theory was based almost

entirely on behavioral principles (see 2.2). This meant that

the procedures and practice of educational technology

evolved to accommodate behavioral accounts of learning and

instruction (Winn, 1989). History teaches us that theories

change more readily than practice. Therefore, when research-

ers started to develop cognitive theories that compensated

for the inadequacy of behaviorism to explain many aspects

of human activity, the technologies and practices by means

of which psychological theory is applied changed much more

slowly, and in some cases not at all. The practices recom-

mended by some schools of thought in instructional design

are still exclusively behavioral. This chapter is colored by

the tension that exists between some aspects of traditional

practice in educational technology and cognitive theory, a

tension that arises from the difficulty of trying to reconcile

one kind of theory with procedures for application devel-

oped for another kind.

The different rates of change in the theory and practice

of educational technology mean that the true importance of

research in cognitive psychology to our field must be exam-

ined in its historical context. For this reason, the chapter be-

gins with a brief review of the antecedents of cognitive theory

and of behaviorism against which it reacted. The historical

development of cognitive psychology and cognitive science

is addressed in a little more detail. The next two sections

deal with two of the cornerstones of cognitive theory, men-

tal representation, and mental processes. It will become clear

that these topics are not entirely dissociable one from the

other. Nonetheless, we feel that this somewhat artificial dis-

tinction is a better compromise for the sake of clarity than

the muddle that would surely ensue from trying to treat both

at once. The final section speaks specifically to the relevance

of cognitive psychology to the practice of educational

technology, namely, instructional design. It examines ways

in which cognitive theory has been brought to both the theory

of instruction and the design procedures by means of which

that theory is applied to practical tasks.

5.2   HISTORICAL OVERVIEW

Most readers will already know that cognitive theory

came into its own as an extension of (some would say a

replacement of) behavioral theory (see 2.2.1). However, many

of the tenets of cognitive theory are not new and date back to

the very beginnings of the autonomous discipline of psy-

chology in the 19th century. We therefore begin with a brief

discussion of introspection and of Gestalt theory before turn-

ing to the story of cognitive psychology’s reaction to behav-

iorism.

5.2.1   Introspection

One of the major forces that helped psychology emerge

as a distinct discipline at the end of the 19th century was the

work of the German psychologist Wundt (Boring, 1950).

Wundt made two significant contributions, one conceptual

and the other methodological. First, he clarified the bound-

aries of the new discipline. Psychology was the study of the

inner world, not the outer world, which was the domain of

physics. And the study of the inner world was to be the study

of thought, or mind, not of the physical body, which was the

domain of physiology. At first glance, these two distinctions

may strike us as somewhat naive. However, it is worth not-

ing that a great deal of recent research in cognitive psychol-

ogy has looked at the issue of how the physical world is

mapped onto memory, and in some cases it is not always

clear where the physical world ends and the mental world

begins. Also, there is now a growing interest in neurophysi-

ological explanations of perception and cognition. This in-

terest is occurring at a time when philosophers and psycholo-

gists are questioning Cartesian dualism, which proposes that

mind and body are separate and which has held sway in

Western thought since the 17th century. The distinction be-

tween mind and brain is becoming blurred. Thus, today, phys-
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ics and physiology are not necessarily cleanly separated from

psychology.

Wundt’s methodological contribution was the develop-

ment of introspection as a means for studying the mind. Phys-

ics, and to a large extent physiology, deals with phenomena

that are objectively present and therefore directly observ-

able and measurable. Thought is both highly subjective and

intangible. Therefore, Wundt proposed, the only access to it,

if one was to study it directly, was for a person to examine

his or her own thoughts. And the only way to do that was

through introspection. Wundt developed a program of re-

search that extended over many decades and attracted ad-

herents from laboratories in many countries. Typically, his

experimental tasks were simple: pressing buttons, watching

displays. The data of greatest interest were the descriptions

his subjects gave of what they were thinking about as they

performed the tasks.

On the face of it, Wundt’s approach was very sensible.

You best learn about things by studying them directly. And

the only direct route to thought is via a subject’s description

of his or her own thinking. The danger of introspection lies

in the difficulty persons have thinking about their own think-

ing. Behaviorists would soon decry the lack of objectivity in

the method. What is more, we have to ask whether the act of

thinking about thinking interferes with and changes the think-

ing that one is interested in studying. Is there an “uncertainty

principle” at work whereby the act of thinking about thought

changes its very nature?

It is important to note that, in spite of criticism that led to

its ultimate demise, introspection (the first psychology) was

unashamedly cognitive. What is more, the same general ac-

cess route to cognitive processes is used today in think-aloud

protocols (Ericsson & Simon, 1984) obtained while subjects

perform natural or experimental tasks. The method is re-

spected, judged to be valid if properly applied, and essential

to the study of thought and behavior in the real world or in

simulations of it.

5.2.2   Gestalt Psychology

The word Gestalt is a German noun that

has two meanings: besides the connotation of “shape” or

“form” as a property of things, it has the meaning of a

concrete individual and characteristic entity, existing as

something detached and having a shape or form as one of its

attributes. Following this tradition, in Gestalt theory, the

word Gestalt means any segregated whole    (Hartman,

1935).

Thus, Gestalt psychology is the study of how people see

and understand the relation of the whole to the parts that

make up that whole.

Wertheimer (1924) stated that Gestalt psychology was

not trying to find the meaning of each individual part at the

expense of the whole. He stated:

Gestalt theory will not be satisfied with sham solutions

suggested by a simple dichotomy of science and life. Instead,

Gestalt theory is resolved to penetrate the problem itself by

examining the fundamental assumptions of science. It has

long seemed obvious—and is, in fact, the characteristic tone

of European science—that “science” means breaking up

complexes into their component elements. Isolate the

elements, discover their laws, then reassemble them, and the

problem is solved. All wholes are reduced to pieces and

piecewise relations between pieces. The fundamental

“formula” of Gestalt theory might be expressed this way:

There are wholes, the behavior of which is not determined by

that of their individual elements, but where the part-processes

are themselves determined by the intrinsic nature of the

whole. It is the hope of Gestalt theory to determine the nature

of such wholes (Wertheimer, 1924).

Although the major features of this “new” psychology

were developed by Wertheimer, his two protégés, Kohler and

Koffka, were responsible for the wide dissemination of this

school of thought. This spread was assisted by the rise in

Germany of the Nazi party in 1933. Hitler expelled

Wertheimer, Levin, von Hornbostel, Stern, Werner, and other

Gestalt scholars, ensuring the spread of the concept. Koffka

was appointed a research professor at Smith College, and

Kohler would soon be at Harvard. Both had been giving lec-

ture tours explaining the principles and concepts of this new

school.

One of the best illustrations of the whole being different

from the sum of the parts is provided by Ehrenfels in a mu-

sical example. If a melody is played on an instrument, it is

recognizable. If the melody is played again, but this time in

another key, it is still recognizable. However, if the same

notes, in the same key, were played in a different sequence,

the listener will not recognize any similarity between the

first and the second melody. As an example, if the sequence

of notes for the first melody was e e f g g f e d c c d e e d d,

and the second melody played was b b c d d c b a g g a b b a

a, the listener would recognize the melody immediately as

being the same even though different notes are involved. But

if the second sequence used the same notes but in a different

order, e e g g f f c c d d e e e d d, the similarity would not be

recognized unless, of course, the listener understood the pre-

cise way in which the melody has been transformed.

Based on this difficulty, and the ability of a person to

recognize and even reproduce a melody in a key different

from the original one.

Ehrenfels concludes that the resemblance between spatial

and tonal patterns rests upon something other than a

similarity of their accompanying elements. The totals

themselves, then, must be different entities than the sums of

their parts.



In other words, the “Gestaltqualität” (“form quality”) or

whole has been reproduced: the elements or Parts have not”

(Hartmann, 1935).

The central tenet of Gestalt theory—that our perception

and understanding of objects and events in the world de-

pends on the appearance and actions of whole objects, not of

their individual parts — has had some influence on the evo-

lution of research in educational technology. The key to that

influence are the well-known Gestalt laws of perceptual or-

ganization, codified by Wertheimer (1938). These include

the principles of “good figure, ” “figure-ground separation,

” and “continuity.” These laws formed the basis for a consid-

erable number of message design principles (see 26.2) (Flem-

ing & Levie, 1978), in which Gestalt theory about how we

perceive and organize information that we see is used in pre-

scriptive recommendations about how to present informa-

tion on the page, or screen. A similar approach to what we

hear is taken by Hereford and Winn (1994).

More broadly, the influence of Gestalt theory is evident

in much of what has been written about visual literacy (see

16.4). In this regard, Arnheim’s book Visual Thinking (1969)

is a key work. It was widely read and cited by scholars of

visual literacy and proved influential in the development of

that movement.

Finally, it is important to note the recent renewal of in-

terest in Gestalt theory (Henle, 1987; Epstein, 1988). The

Gestalt psychologists provided little empirical evidence for

their laws of perceptual organization beyond everyday ex-

perience of their effects. Recently, perceptual psychologists

(Pomerantz, 1986; Rock, 1986) have provided explanations

for how perceptual organization works from the findings of

controlled experiments. The effects of such stimulus features

as symmetry on perceptual organization has been explained

in terms of the “emergent properties” (Rock, 1986) of what

we see in the world around us. We see a triangle as a tri-

angle, not as three lines and three angles. Emergent proper-

ties, of course, are the same as the Gestaltist’s “whole” that

has features all its own that are, indeed, greater than the sum

of the parts.

5.2.3   The Rise of Cognitive Psychology

Behavioral theory is described in detail elsewhere in this

handbook (see 2.2). Suffice it to say that behaviorism em-

bodies two of the key principles of positivism: that our knowl-

edge of the world can only evolve from the observation of

objective facts and phenomena; and that theory can only be

built by applying this observation in experiments where only

one or two factors are allowed to vary as a function of an

experimenter’s manipulation or control of other related fac-

tors. The first of these principles therefore banned from be-

havioral psychology unobservable mental states, images,

insights, and Gestalts. The second principle banned research

methods that involved the subjective techniques of introspec-

tion, phenomenology, and the drawing of inferences from

observation rather than from objective measurement. Ryle’s

(1949) relegation of the concept of “mind” to the status of

‘the ghost in the machine, ” both unbidden and unnecessary

for a scientific account of human activity, captures the be-

haviorist ethos exceptionally well.

Behaviorism’s reaction against the suspect subjectivity

of introspection was necessary at the time if psychology were

to become a scientific discipline. However, the imposition

of the rigid standards of objectivism (see 7.3) and positiv-

ism excluded from accounts of human behavior many of those

experiences with which we are extremely familiar. We all

experience mental images, feelings, insight, and a whole host

of other unobservable and unmeasurable phenomena. To deny

their importance is to deny much of what it means to be hu-

man (Searle, 1992). Cognitive psychology has been some-

what cautious in acknowledging the ability or even the need

to study such phenomena, often dismissing them as “folk

psychology” (Bruner, 1990). Only recently, this time as a

reaction against the inadequacies of cognitive rather than

behavioral theory, do we find serious consideration of sub-

jective experiences. (These are discussed in Bruner, 1991;

Clancey, 1993; Edelman, 1992; Searle, 1992; and Varela,

Thompson & Rosch, 1991, among others. They are also

touched on elsewhere in this handbook.)

Cognitive psychology’s reaction against the inability of

behaviorism to account for much human activity arose mainly

from a concern that the link between a stimulus and a re-

sponse was not straightforward, that there were mechanisms

that intervened to reduce the predictability of a response to a

given stimulus, and that stimulus-response accounts of com-

plex behavior unique to humans, like the acquisition and use

of language, were extremely complex and contrived.

(Chomsky’s [1964] review of Skinner’s [1957] S-R account

of language acquisition is a classic example of this point of

view and is still well worth reading.) Cognitive psychology

therefore focuses on mental processes that operate on stimuli

presented to the perceptual and cognitive systems, and which

usually contribute significantly to whether or not a response

is made, when it is made, and what it is. Whereas behavior-

ists claim that such processes cannot be studied because they

are not directly observable and measurable, cognitive psy-

chologists claim that they must be studied because they alone

can explain how people think and act the way they do.

Let me give two examples of the transition from behav-

ioral to cognitive theory. The first concerns memory, the sec-

ond mental imagery.

Behavioral accounts of how we remember lists of items

are usually associationist. Memory in such cases is accom-

plished by learning S-R associations among pairs of items in

a set and is improved through practice (Gagné, 1965;

Underwood, 1964). However, we now know that this is not

the whole story and that mechanisms intervene between the

stimulus and the response that affect how well we remem-

ber. The first of these is the collapsing of items to be remem-



bered into a single “chunk.” Chunking is imposed by the

limits of short-term memory to roughly seven items (Miller,

1956). Without chunking, we would never be able to remem-

ber more than seven things at once. When we have to re-

member more than this limited number of items. we tend to

learn them in groups that are manageable in short-term

memory, and then to store each group as a single unit. At

recall, we “unpack” (Anderson, 1983) each chunk and re-

trieve what is inside. Chunking is more effective if the items

in each chunk have something in common, or form a spatial

(McNamara 1986; McNamara, Hardy & Hirtle, 1989) or tem-

poral (Winn, 1986) group.

A second mechanism that intervenes between a stimulus

and response to promote memory for items is interactive

mental imagery. When people are asked to remember pairs

of items and recall is cued with one item of the pair, perfor-

mance is improved if they form a mental image in which the

two items appear to interact (Paivio, 1971, 1983; Bower,

1970). For example, it is easier for you to remember the pair

Whale Cigar if you imagine a whale smoking a cigar. The

use of interactive imagery to facilitate memory has been de-

veloped into a sophisticated instructional technique by Levin

and his colleagues (Morrison & Levin, 1987; Peters & Levin,

1986). The considerable literature on the role of imagery in

paired-associate and other kinds of learning is summarized

by Paivio (1971, 1983; Clark & Paivio, 1991).

The importance of these memory mechanisms to the de-

velopment of cognitive psychology is that, once understood,

they make it very clear that a person’s ability to remember

items is improved if the items are meaningfully related to

each other or to the person’s existing knowledge. The key

word here is meaningful. For now, we shall simply assert

that what is meaningful to people is determined by what they

can remember of what they have already learned. This im-

plies a circular relationship among learning, meaning, and

memory—that what we learn is affected by how meaningful

it is, that meaning is determined by what we remember, and

that memory is affected by what we learn. However, this

circle is not a vicious one. The reciprocal relationship be-

tween learning and memory, between environment and

knowledge, is the driving force behind established theories

of cognitive development (Piaget, 1968) and of cognition

generally (Neisser, 1976), as we shall see in our examina-

tion of schema theory. It is also worth noting that Ausubel’s

(1963) important book on meaningful verbal learning pro-

posed that learning is most effective when memory struc-

tures appropriate to what is about to be learned are created

or activated through advance organizers. More generally,

then, cognitive psychology is concerned with meaning, or

semantics, while behavioral psychology is not.

Mental imagery provides another interesting example of

the differences between behavioral and cognitive psychology.

Imagery was so far beyond the behaviorist pale that Mandler’s

article, which reintroduced the topic, was subtitled “The re-

turn of the ostracized.” Images were, of course, central to

Gestalt theory, as we have seen. But because they could not

be observed, and because the only route to them was through

introspection and self-report, they had no place in behav-

ioral theory.

Yet we can all, to some degree, conjure up mental im-

ages. We can also deliberately manipulate them. Kosslyn,

Ball, and Reiser (1978) trained their subjects to “zoom” in

and out of images of familiar objects and found that the “dis-

tance” between the subject and the imagined object con-

strained the subject’s ability to describe the object. To dis-

cover the number of claws on an imaged cat, for example,

the subject had to move closer to it in the mind’s eye.

This ability to manipulate images is useful in some kinds

of learning. The method of “Loci” (Kosslyn, 1985; Yates,

1966), for example, requires a person to create a mental im-

age of a familiar place in the mind’s eye and to place in that

location images of objects that are to be remembered. Recall

consists of mentally walking through the place and describ-

ing the objects you find. The effectiveness of this technique,

which was known to the orators of ancient Greece, has been

demonstrated empirically (Cornoldi & De Beni, 1991; De

Beni & Cornoldi, 1985).

Mental imagery will be discussed in more detail in the

section on representation (5.3). For now, we will draw atten-

tion to two methodological issues that are raised by its study.

First, some studies of imagery are symptomatic of a conser-

vative color to some cognitive research. As Anderson (1978)

has commented, any conclusions about the existence and

nature of images can only be inferred from observable be-

havior. You can only really tell if the Loci method has worked

if a person can name items in the set to be remembered. On

this view, the behaviorists were right. Objectively observ-

able behavior is all even cognitive researchers have to go

on. This means that cognitive psychology has to study men-

tal representation and processes indirectly and to draw con-

clusions about them by inference rather than from direct

measurement. (This will doubtless change as techniques for

directly observing brain functions during cognitive activity

become available and reliable. See Farah, 1989.)

The second methodological issue is exemplified by

Kosslyn’s (1985) use of introspection and self-report by sub-

jects to obtain his data on mental images. The scientific tra-

dition that established the methodology of behavioral psy-

chology considered subjective data to be biased, tainted, and

therefore unreliable. This precept has carried over into the

mainstream of cognitive research. Yet, in his invited address

to the 1976 AERA conference, the sociologist Uri

Bronfenbrenner (1976) expressed surprise, indeed dismay,

that educational researchers do not ask subjects their opin-

ions about the experimental tasks they carry out, nor about

whether they performed the tasks as instructed or in some

other way. Certainly, this stricture has eased in much of the

educational research that has been conducted since 1976,



and nonexperimental methodology, ranging from ethnogra-

phy to participant observation to a variety of phenomeno-

logically based approaches to inquiry is the norm for certain

types of educational research (see, for example, the many

articles that appeared in the mid-80s, among them Baker,

1984; Eisner, 1984; Howe, 1983; Phillips, 1983). Nonethe-

less, strict cognitive psychology still tends to adhere to ex-

perimental methodology, based on positivism, which makes

research such as Kosslyn’s on imagery somewhat suspect.

5.2.4   Cognitive Science

Inevitably, cognitive psychology has come face to face

with the computer. This is not merely a result of the times in

which the discipline has developed but also emerges from

the intractability of many of the problems cognitive psy-

chologists seek to solve. The necessity for cognitive research-

ers to build theory by inference rather than from direct mea-

surement has always been problematic. And it seems that it

will remain so until such time as the direct measurement of

brain activity is possible on a large scale.

One way around this problem is to build theoretical mod-

els of cognitive activity, to write computer simulations that

predict what behaviors are likely to occur if the model is an

accurate instantiation of cognitive activity, and to compare

the behavior predicted by the model—the output from the

program—to the behavior observed in subjects. A good ex-

ample of this approach is found in the work of David Marr

(1982) on vision.

Marr began with the assumption that the mechanisms of

human vision are too complex to understand at the neuro-

logical level. Instead, he set out to describe the functions

that these mechanisms need to perform as what is seen by

the eye as it moves from the retina to the visual cortex and is

interpreted by the viewer. The functions Marr developed were

mathematical models of such processes as edge detection,

the perception of shapes at different scales and stereopsis

(Marr & Nishihara, 1978). The observed electrical activity

of certain types of cell in the visual system matched the ac-

tivity predicted by the model almost exactly (Man & Ullman,

1981).

Marr’s work has had implications that go far beyond his

important work on vision, and as such serves as a paradig-

matic case of cognitive science. Cognitive science is not

called that because of its close association with the com-

puter but because it adopts the functional or computational

approach to psychology that is so much in evidence in Marr’s

work. By “functional” (see Pylyshyn, 1984), we mean that it

is concerned with the functions the cognitive system must

perform, not with the devices through which cognitive pro-

cesses are implemented. A commonly used analogy is that

cognitive science is concerned with cognitive software, not

hardware. By “computational” (Arbib & Hanson, 1987;

Richards, 1988), we mean that the models of cognitive sci-

ence take information that a learner encounters, perform logi-

cal or mathematical operations on it, and describe the out-

comes of those operations. The computer is the tool that al-

lows the functions to be tested, the computations to be per-

formed.

The tendency in cognitive science to create theory around

computational rather than biological mechanisms points to

another characteristic of the discipline. Cognitive scientists

conceive of cognitive theory at different levels of descrip-

tion. The level that comes closest to the brain mechanisms

that create cognitive activity is obviously biological. How-

ever, as Marr presumed, this level is virtually inaccessible to

cognitive researchers, consequently requiring the construc-
tion of more abstract functional models. The number, na-
ture, and names of the levels of cognitive theory vary from
theory to theory and from researcher to researcher. Ander-
son (1990, Chapter 1) provides a useful discussion of levels,
including those of Chomsky (1965), Pylyshyn (1984),
Rumelhart and McClelland (1986), and Newell (1982), in
addition to Marr’s and his own. In spite of their differences,
each of these approaches to levels of cognitive theory im-
plies that if we cannot explain cognition in terms of the
mechanisms through which it is actually realized, we can
explain it in terms of more abstract mechanisms that we can
profitably explore. In other words, the different levels of
cognitive theory are really different metaphors for the actual
processes that take place in the brain.

The computer has assumed two additional roles in cog-

nitive science beyond that of a tool for testing models. First,

some have concluded that, because computer programs writ-

ten to test cognitive theory accurately predict observable

behavior that results from cognitive activity, cognitive ac-

tivity must itself be computerlike (see 19.2.3.1). Cognitive

scientists have proposed numerous theories of cognition that

embody the information-processing principles and even the

mechanisms of computer science (Boden, 1988; Johnson-

Laird, 1988). Thus we find reference in the cognitive sci-

ence literature to input and output, data structures, infor-

mation processing, production systems, and so on. More sig-

nificantly, we find descriptions of cognition in terms of the

logical processing of symbols (Larkin & Simon, 1987;

Salomon, 1979; Winn, 1982).

Second, cognitive science has provided both the theory

and the impetus to create computer programs that “think”

just as we do. Research in artificial intelligence blossomed

during the 80s, and was particularly successful when it pro-

duced intelligent tutoring systems (see 19.3; Anderson &

Reiser, 1985; Anderson, Boyle & Yost, 1985; Wenger, 1987)

and expert systems (see 24.8; Forsyth, 1984). The former

are characterized by the ability to understand and react to

the progress a student makes working through a computer-

based tutorial program. The latter are smart “consultants, ”

usually to professionals whose jobs require them to make

complicated decisions from large amounts of data.



Its successes notwithstanding, AI has shown up the weak-

nesses of many of the assumptions that underlie cognitive

science, especially the assumption that cognition consists in

the logical mental manipulation of symbols. Recently, schol-

ars (Clancey, 1993; Dreyfus, 1979; Dreyfus & Dreyfus, 1986;

Edelman, 1992; Searle, 1992) have been vigorous in their

criticism of this and other assumptions of cognitive science,

as well as of computational theory and, more basically, func-

tionalism. The critics imply that cognitive scientists have lost

sight of the metaphorical origins of the levels of cognitive

theory and have assumed that the brain really does compute

the answer to problems by symbol manipulation. Searle’s

comment sets the tone: “If you are tempted to functional-

ism, we believe you do not need refutation, you need help”

(1992, p. 9). As we shall see in the last section of this chap-

ter, cognitive science is at the point behavioral theory was in
the early 60s — facing criticism from proponents of a new
paradigm for psychology.

5.2.5   Section Summary

Although many of the ideas in this section will be devel-

oped in what follows, we think it is useful at this point to

provide a short summary of the ideas presented so far. We

have seen that cognitive psychology returned to center stage

largely because stimulus-response theory did not adequately

or efficiently account for many aspects of human behavior

that we all observe from day to day. The research on memory

and mental imagery that we briefly described indicated that

psychological processes and prior knowledge intervene be-

tween the stimulus and the response, making the latter less

predictable by behavioral theory. We have also seen that

nonexperimental and nonobjective methodology is now

deemed appropriate for certain types of research. However,

it is possible to detect a degree of conservatism in main-

stream cognitive psychology that still insists on the objec-

tivity and quantifiability of data.

Cognitive science, emerging from the confluence of cog-

nitive psychology and computer science, has developed its

own set of assumptions, not least among which are com-

puter models of cognition. These have served well, at differ-

ent levels of abstraction, to guide cognitive research, lead-

ing to such applications as intelligent tutors and expert sys-

tems. However, the computational theory and functionalism

that underlie these assumptions have been the source of con-

siderable recent criticism and point perhaps to the closing of

the current chapter in the history of psychology.

The implications of all of this for research and practice

in educational technology will be dealt with in section 5.5.

We would nonetheless like to anticipate three aspects of that

discussion. First, educational technology research, and par-

ticularly mainstream instructional design practice, needs to

catch up with cognitive theory. As we have suggested else-

where (Winn, 1989), it is not sufficient simply to substitute

cognitive objectives for behavioral objectives and to tweak

our assessment techniques to gain access to knowledge sche-

mata rather than just to observable behaviors. More funda-

mental changes are required.

Second, shifts in the technology itself away from rather

prosaic and ponderous computer-assisted programmed in-

struction to highly interactive multimedia environments per-

mit educational technologists to develop serious alternatives

to didactic instruction. We can now use technology to do

more than direct teaching. We can use it to help students

construct meaning for themselves through experience in ways

proposed by constructivist theory and practice described else-

where in this handbook (see 7.4, 20.3, 20.4, 23.4, 24.6) and

by Duffy and Jonassen (1992), Duffy, Jonassen, and Lowyck

(1993), and others.

Third, the proposed alternatives to computer models of

cognition—which explain first-person experience,

nonsymbolic thinking and learning, and reflection-free cog-

nition—lay the conceptual foundation for educational de-

velopments of virtual realities (see Chapter 15; Winn, 1993).

The full realization of these new concepts and technologies

lies in the future. However, we need to get ahead of the game

and prepare for when these eventualities become a reality.

5.3   MENTAL REPRESENTATION

The previous section showed the historical origins of the

two major aspects of cognitive psychology that are addressed

in this and the next section. These are mental representation

and mental processes. Our example of representation was

the mental image, and passing reference was made to memory

structures and hierarchical chunks of information. We also

talked generally about the input, processing, and output func-

tions of the cognitive system, and paid particular attention

to Marr’s account of the processes of vision.

This section deals with cognitive theories of mental rep-

resentation. How we store information in memory, represent

it in our mind’s eye, or manipulate it through the processes

of reasoning has always seemed relevant to researchers in

educational technology. Our field has sometimes supposed

that the way in which we represent information mentally is a

direct mapping of what we see and hear about us in the world

(see Knowlton, 1966; Cassidy & Knowlton, 1983; Sless,

1981). Educational technologists have paid a considerable

amount of attention to how visual presentations of different

levels of abstraction affect our ability to reason literally and

analogically (Winn, 1982). Since the earliest days of our dis-

cipline (Dale, 1946), we have been intrigued by the idea that

the degree of realism with which we present information to

students determines how well they learn. More recently

(Salomon, 1979), we have come to believe that our thinking

uses various symbol systems as tools, enabling us both to

learn and to develop skills in different symbolic modalities.

How mental representation is affected by what a student en-

counters in the environment has become inextricably bound

up with the part of our field we call message design (Flem-

ing & Levie, 1993; Rieber, 1994; Chapter 7).



5.3.1   Schema Theory

The concept of “schema” is central to cognitive theories

of representation. There are many descriptions of what sche-

mata are. All descriptions concur that a schema has the fol-

lowing characteristics: (1) It is an organized structure that

exists in memory and, in aggregate with all other schemata,

contains the sum of our knowledge of the world (Paivio,

1974). (2) It exists at a higher level of generality, or abstrac-

tion, than our immediate experience with the world. (3) It

consists of concepts that are linked together in propositions.

(4) It is dynamic, amenable to change by general experience

or through instruction. (5) It provides a context for interpret-

ing new knowledge as well as a structure to hold it. Each of

these features requires comment.

5.3.1.1.   Schema as Memory Structure. The idea that

memory is organized in structures goes back to the work of

Bartlett (1932). In experiments designed to explore the na-

ture of memory that required subjects to remember stories,

Bartlett was struck by two things: First, recall, especially

over time, was surprisingly inaccurate; second, the inaccu-

racies were systematic in that they betrayed the influence of

certain common characteristics of stories and turns of event

that might be predicted from common occurrences in the

world. Unusual plots and story structures tended to be re-

membered as closer to “normal” than in fact they were.

Bartlett concluded from this that human memory consisted

of cognitive structures that were built over time as the result

of our interaction with the world and that these structures

colored our encoding and recall of subsequently encountered

ideas. Since Bartlett’s work, both the nature and function of

schemata have been amplified and clarified experimentally.

The next few paragraphs describe how.

5.3.1.2. Schema as Abstraction. A schema is a more

abstract representation than a direct perceptual experience.

When we look at a cat, we observe its color, the length of its

fur, its size, its breed if that is discernible, and any unique

features it might have, such as a torn ear or unusual eye co-

lon. However, the schema that we have constructed from

experience to represent “cat” in our memory, and by means

of which we are able to identify any cat, does not contain

these details. Instead, our “cat” schema will tell us that it has

eyes, four legs, raised ears, a particular shape, and habits.

However, it leaves those features that vary among cats, like

eye color and length of fur, unspecified. In the language of

schema theory, these are “place-holders, ” “slots, ” or “vari-

ables” to be “instantiated” through recall or recognition

(Norman & Rumelhart, 1975).

It is this abstraction, or generality, that makes schemata

useful. If memory required that we encode every feature of

every experience that we had, without stripping away vari-

able details, recall would require us to match every experi-

ence against templates in order to identify objects and events,

a suggestion that has long since been discredited for its un-

realistic demands on memory capacity and cognitive pro-

cessing resources (Pinker, 1985). On rare occasions, the gen-

erality of schemata may prevent us from identifying some-

thing. For example, we may misidentify a penguin because,

superficially, it has few features of a bird. As we shall see

below, learning requires the modification of schemata so that

they can accurately accommodate unusual instances, like

penguins, while still maintaining a level of specificity that

makes them useful.

5.3.1.3. Schema as Network. Schemata have been con-

ceived of and described in many ways. One of the most preva-

lent conceptions of schema has been as a network of con-

cepts connected by links. Illustrative is Palmer’s (1975) de-

scription of a schema to represent the concept “face.” The

schema consists of nodes and links that describe the rela-

tions between node pairs. The central node in the network is

the head, which is roughly oval in shape. The other nodes,

representing other features of a face such as eyes nose, and
mouth, are described in terms of their relationship to the head.
The right eye is connected to the head by three links specify-
ing shape, size, and location. Thus, the eye is an oval, like
the head, but turned through an angle of 90 relative to the
head; it is roughly one-eighth the size of the head; it is lo-
cated above and to the right of the head’s center. In this
schema, the relationships—size, shape, and orientation—are
constant, and the nodes—eye, nose, mouth—are “placehold-
ers” whose exact nature varies from case to case. Eye color,
for example, is not specified in the face schema. But eyes
are always above the nose. As in most cases, it is therefore
the schema’s structure, determined by the links, rather than
characteristics of individual nodes that is encoded and against
which new information is compared.

5.3.1.4.   Schema as Dynamic Structure. A schema is

not immutable. As we learn new information, either from

instruction or from day-to-day interaction with the environ-

ment, our memory and understanding of our world will

change. Schema theory proposes that our knowledge of the

world is constantly interpreting new experience and adapt-

ing to it. These processes, which Piaget (1968) has called

assimilation and accommodation, and which Thorndyke and

Hayes-Roth (1979) have called bottom-up and top-down pro-

cessing, interact dynamically in an attempt to achieve cog-

nitive equilibrium without which the world would be a

tangled blur of meaningless experiences. The process works

like this: (1) When we encounter a new object, experience,

or piece of information, we attempt to match its features and

structure (nodes and links) to a schema in memory (bottom-

up). On the basis of the success of this first attempt at match-

ing, we construct a hypothesis about the identity of the ob-

ject, experience, on information, on the basis of which we

look for further evidence to confirm our identification (top-

down). If further evidence confirms our hypothesis, we as-

similate the experience to the schema. If it does not, we re-

vise our hypothesis, thus accommodating to the experience.



Let us return to Palmer’s (1975) “face” schema to illus-

trate. Palmer describes what happens when a person is shown

a “face, ” whose head consists of a watermelon, whose eyes

are apples, whose nose is a pear, and whose mouth is a ba-

nana. At first glance, on the basis of structural cues, one in-

terprets the picture as a face. However, this hypothesis is not

borne out when confirming evidence is sought and a “fruit”

schema (or perhaps “fruitface” schema) is hypothesized.

Admittedly, this example is a little unusual. However, it brings

home the importance of structure in schemata and illustrates

the fact that accommodation of a schema to new informa-

tion is often achieved by reconciling discrepancies between

global and local features.

Learning takes place as schemata change, as they accom-

modate to new information in the environment, and as new

information is assimilated by them. Rumelhart and Norman

(1981) discuss important differences in the extent to which

these changes take place. Learning takes place by accretion,

by schema tuning, or by schema creation.

In the case of accretion, the match between new infor-

mation and schemata is so good that the new information is

simply added to an existing schema with almost no accom-

modation of the schema at all. A hiker might learn to recog-

nize a golden eagle simply by matching it to an already-fa-

miliar bald eagle schema, noting only the absence of the

former’s white head and tail.

Schema tuning results in more radical changes in a

schema. A child raised in the inner city might have formed a

“bird” schema on the basis of seeing only sparrows and pi-

geons. The features of this schema might be: a size of be-

tween 3 and 10 inches, flying by flapping wings, found

around and on buildings. This child’s first sighting of an eagle

would probably be confusing, and might lead to a

misidentification as an airplane, which is bigger than 10

inches long and does not flap its wings. Learning, perhaps

through instruction, that this creature was indeed a bird would

lead to changes in the “bird” schema, to include soaring as a

means of getting around, large size, and mountain habitat.

Rumelhart and Norman describe schema creation as oc-

curring by analogy. Stretching the bind example to the limits

of credibility, imagine someone from a country that has no

birds but lots of bats for whom a “bird” schema does not

exist. The creation of a bird schema could take place by tem-

porarily substituting the features birds have in common with

bats and then specifically teaching the differences. The dan-

ger, of course, is that a significant residue of bat features

could persist in the bird schema, in spite of careful instruc-

tion. Analogies can therefore be misleading (Spiro, Feltovich,

Coulson & Anderson, 1989) if they are not used with ex-

treme care.

5.3.1.5. Schema as Context. Not only does a schema

serve as a repository of experiences. It provides a context

that affects how we interpret new experiences and even di-

rects our attention to particular sources of experience and

information. From the time of Bartlett, schema theory has

been developed largely from research in reading compre-

hension. And it is from this area of research that the stron-

gest evidence comes for the decisive role of schemata in in-

terpreting text.

The research design for these studies requires the activa-

tion of a well-developed schema to set a context, the presen-

tation of a text that is often deliberately ambiguous, and a

comprehension posttest. For example, Bransford and Johnson

(1972) had subjects study a text that was so ambiguous as to

be meaningless without the presence of an accompanying

picture. Anderson, Reynolds, Schallert, and Goetz (1977)

presented ambiguous stories to different groups of people. A

story that could have been about weight lifting or a prison

break was interpreted to be about weight lifting by students

in a weight-lifting class, but in other ways by other students.

Musicians interpreted a story that could have been about play-

ing cards or playing music as if it were about music.

Neisser (1976) has argued that schemata not only deter-

mine interpretation but also affect people’s anticipations of

what they are going to find in the environment. Thus, in what

Neisser calls a perceptual cycle, “anticipatory schemata” di-

rect our exploration of the environment. Our exploration of

the environment leads us to some sources of information

rather than others. The information we find modifies our sche-

mata, in ways we have already encountered, and the cycle

repeats itself.

5.3.2   Schema Theory and Educational
Technology

Schema theory has influenced educational technology in

a variety of ways. For instance, the notion of activating a

schema in order to provide a relevant context for learning

finds a close parallel in Gagné, Briggs, and Wager’s (1988)

third instructional “event, ” “stimulating recall of prerequi-

site learning.” Reigeluth’s (Reigeluth & Stein, 1983)

“elaboration theory” of instruction consists of, among other

things, prescriptions for the progressive refinement of sche-

mata. The notion of a “generality, ” which has persisted

through the many stages of Merrill’s instructional theory

(Merrill, 1983, 1988; Merrill, Li & Jones, 1991), is close to

a schema.

There are however three particular ways in which edu-

cational technology research has used schema theory (or at

least some of the ideas it embodies, in common with other

cognitive theories of representation). The first concerns the

assumption, and attempts to support it, that schemata can be

more effectively built and activated if the material that stu-

dents encounter is somehow isomorphic to the putative struc-

ture of the schema. This line of research extends into the

realm of cognitive theory’s earlier attempts to propose and

validate a theory of audiovisual (usually more visual than

audio) education and concerns the role of pictorial and



graphic illustration in instruction (Dale, 1946; Carpenter,

1953; Dwyer, 1972, 1978, 1987).

The second way in which educational technology has used

schema theory has been to develop and apply techniques for

students to use to impose structure on what they learn and

thus make it more memorable. These techniques are referred

to, collectively, by the term information mapping.

The third line of research consists of attempts to use sche-

mata to represent information in a computer and thereby to

enable the machine to interact with information in ways

analogous to human assimilation and accommodation. This

brings us to a consideration of the role of schemata, or

“scripts” (Schank & Abelson, 1977) or “plans” (Minsky,

1975) in AI and “intelligent” instructional systems (see

19.2.3.1).   The next sections examine these lines of research.

5.3.3   Schema-Message Isomorphism: Imaginal
Encoding

There are two ways in which pictures and graphics can

affect how information is encoded in schemata. Some re-

search suggests that a picture is encoded directly as a mental

image. This means that encoding leads to a schema that re-

tains many of the properties of the message that the student

saw, such as its spatial structure and the appearance of its

features. Other research suggests that the picture or graphic

imposes a structure on information first and that proposi-

tions about this structure rather than the structure itself are

encoded. The schema therefore does not contain a mental

image but information that allows an image to be created in

the mind’s eye when the schema becomes active. This and

the next section examine these two possibilities.

Research into imaginal encoding is typically conducted

within the framework of theories that propose two (at least)

separate, though connected, memory systems (see 29.2.3).

Paivio’s (1983; Clark & Paivio, 1992) “dual coding” theory

and Kulhavy’s (Kulhavy, Lee & Caterino, 1985; Kulhavy,

Stock & Caterino, 1994) “conjoint retention” theory are typi-

cal. Both theories assume that people can encode informa-

tion as languagelike propositions on as picturelike mental

images. This research has provided evidence that (1) pic-

tures and graphics contain information that is not contained

in text, and (2) that information shown in pictures and graph-

ics is easier to recall because it is encoded in both memory

systems, as propositions and as images, rather than just as

propositions, which is the case when students read text. As

an example, Schwartz and Kulhavy (1981) had subjects study

a map while listening to a narrative describing the territory.

Map subjects recalled more spatial information related to

map features than nonmap subjects, while there was no dif-

ference between recall of the two groups on information not

related to map features. In another study, Abel and Kulhavy

(1989) found that subjects who saw maps of a territory re-

called more details than subjects who read a corresponding

text, suggesting that the map provided “second stratum cues”

that made it easier to recall information.

5.3.4   Schema-Message Isomorphism: Structural
Encoding

Evidence for the claim that graphics help students orga-

nize content by determining the structure of the schema in

which it is encoded comes from studies that have examined

the relationship between spatial presentations and cued or

free recall. The assumption is that the spatial structure of the

information on the page reflects the semantic structure of

the information that gets encoded. For example, Winn (1980)

used text with or without a block diagram to teach about a

typical food web to high school subjects. Estimates of sub-

jects’ semantic structures representing the content were ob-

tained from their free associations to words naming key con-

cepts in the food web (e.g., consumer herbivore). It was found

that the diagram significantly improved the closeness of the

structure the students acquired to the structure of the con-

tent.

More recently, McNamara, Hardy, and Hirtle (1989) had

subjects learn spatial layouts of common objects. Ordered

trees, constructed from free-recall data, revealed hierarchi-

cal clusters of items that formed the basis for organizing the

information in memory. A recognition test, in which targeted

items were primed by items either within or outside the same
cluster, produced response latencies that were faster for same-
cluster items than for different-item clusters. The placement
of an item in one cluster or another was determined, for the
most part, by the spatial proximity of the items in the origi-
nal layout.

In another study, McNamara (1986) had subjects study

the layout of real objects placed in an area on the floor. The

area was divided by low barriers into four quadrants of equal

size. Primed recall produced response latencies suggesting

that the physical boundaries imposed categories on the ob-

jects when they were encoded that overrode the effect of

absolute spatial proximity. For example, recall reposes were

slower to items physically close but separated by a bound-

ary than two items further apart but within the same bound-

ary. The results of studies like these have been the basis for

recommendations about when and how to use pictures and

graphics in instructional materials (Levin, Anglin & Carney,

1987; Winn, 1989b).

5.3.5   Schemata and Information Mapping

Strategies exploiting the structural isomorphism of graph-

ics and knowledge schemata have also formed the basis for

a variety of text- and information-mapping schemes aimed

at improving comprehension (Armbruster & Anderson, 1982,

1984) and study skills (Dansereau et al., 1979; Holley &

Dansereau, 1984). Research on the effectiveness of these

strategies and its application is one of the best examples of



how cognitive theory has come to be used by instructional

designers.

The assumptions underlying all information-mapping

strategies are that if information is well organized in memory,

it will be better remembered and more easily associated with

new information, and that students can be taught techniques

exploiting the spatial organization of information on the page

that make what they learn better organized in memory (see

24.7). We have already given examples of research that bears

out the first of these assumptions. We turn now to research

on the effectiveness of information-mapping techniques.

All information-mapping strategies (reviewed and

summarized by Hughes, 1989) require students to learn ways

to represent information, usually text, in spatially constructed

diagrams. With these techniques, they construct diagrams

that represent the concepts they are to learn as verbal labels

often in boxes and that show interconcept relations as lines

or arrows. The most obvious characteristic of these techniques

is that students construct the information maps for themselves

rather than studying diagrams created by someone else. In

this way, the maps require students to process the informa-

tion they contain in an effortful manner, while allowing a

certain measure of idiosyncrasy in the ideas shown, both of

which are attributes of effective learning strategies.

Some mapping techniques are radial, with the key con-

cept in the center of the diagram and related concepts on

arms reaching out from the center (Hughes, 1989). Other

schemes are more hierarchical, with concepts placed on

branches of a tree (Johnson, Pittelman & Heimlich, 1986).

Still others maintain the roughly linear format of sen-

tences but use special symbols to encode interconcept rela-

tions, like equals signs or different kinds of boxes

(Armbruster & Anderson, 1984). Some computer-based sys-

tems provide more flexibility by allowing “zooming” in on

out on concepts to reveal subconcepts within them and by

allowing users to introduce pictures and graphics from other

sources (see 24.7; Fisher et al., 1990).

Regardless of format, information mapping has been

shown to be effective. In some cases, information-mapping

techniques have formed part of study skills curricula (Holley

& Dansereau, 1984; Schewel, 1989). In other cases, the tech-

nique has been used to improve reading comprehension

(Ruddell & Boyle, 1989) or for review at the end of a course

(Fisher et al., 1990). Information mapping has been shown

to be useful for helping students write about what they have

read (Sinatra, Stahl-Gemake & Morgan, 1986) and works

with disabled readers as well as with normal ones (Sinatra,

Stahl-Gemake & Borg, 1986). Information mapping has

proved to be a successful technique in all of these tasks and

contexts, showing it to be remarkably robust.

Information mapping can, of course, be used by instruc-

tional designers (Jonassen, 1991, 1996; Jonassen, Bersner

& Yacci, 1993). In this case, the technique is used not so

much to improve comprehension as to help designers under-

stand the relations among concepts in the material they are

working with. Often, understanding such relations makes

strategy selection more effective. For example, a radial out-

line based on the concept “zebra” (Hughes, 1989) shows,

among other things, that a zebra is a member of the horse

family and also that it lives in Africa on the open grasslands.

From the layout of the radial map, it is clear that member-

ship of the horse family is a different kind of interconcept

relation than the relation with Africa and grasslands. The

designer will therefore be likely to organize the instruction

so that a zebra’s location and habitat are taught together and

not at the same time as the zebra’s place in the mammalian

taxonomy is taught. We will return to instructional design-

ers’ use of information mapping techniques in our discus-

sion of cognitive objectives in section 5.5.

All of this seems to suggest that imagery-based and in-

formation-structuring strategies based on graphics have been

extremely useful in practice. However, the whole idea of iso-

morphism between an information display outside the learner

and the structure and content of a memory schema implies

that information in the environment is mapped fairly directly

into memory. As we have seen, this basic assumption of much

of cognitive theory is currently being seriously challenged.

The extent to which this challenge threatens the usefulness

of using pictures and graphics in instruction remains to be

seen.

5.3.6   Schemata and AI

Another way in which theories of representation have

been used in educational technology is to suggest ways in

which computer programs designed to “think” like people

might represent information. Clearly, this application em-

bodies the “computer models of mind” assumption that we

looked at above (Boden, 1988).

The structural nature of schemata makes them particu-

larly attractive to cognitive scientists working in the area of

artificial intelligence. The reason for this is that they can be

described using the same “language” that is used by com-

puters and therefore provide a convenient link between hu-

man and artificial thought. The best examples are to be found

in the work of Minsky (1975) and of Schank and his associ-

ates (Schank & Abelson, 1977). Here, schemata provide con-

straints on the meaning of information that the computer and

the user share that make the interaction between them more

manageable and useful. The constraints arise from only al-

lowing what typically happens in a given situation to be con-

sidered. For example, certain actions and verbal exchanges

commonly take place in a restaurant. You enter. Someone

shows you to your table. Someone brings you a menu. After

a while, the waiter comes back, and you order your meal.

Your food is brought to you in a predictable sequence. You

eat it in a predictable way. When you have finished, some-



one brings you the bill, which you pay. You leave. It is not

likely (though not impossible, of course) that someone will

bring you a basketball rather than the food you ordered. Usu-

ally, you will eat your food rather than sing to it. You use

cash or a credit card to pay for your meal rather than offer-

ing a giraffe. In this way, the almost infinite number of things

that can occur in the world are constrained to relatively few,

which means that the machine has a better chance of figur-

ing out what your words or actions mean.

Even so, schemata (or “scripts” as Schank [1984] calls

them) cannot contend with every eventuality. This is because

the assumptions about the world that are implicit in our sche-

mata, and therefore often escape our awareness, have to be

made explicit in scripts that are used in AI. Schank (1984)

provides examples as he describes the difficulties encoun-

tered by TALE-SPIN, a program designed to write stories in

the style of Aesop’s fables.

One day Joe Bear was hungry. He asked his friend Irving

Bird where some honey was. Irving told him there was a

beehive in the oak tree. Joe walked to the oak tree. He ate the

beehive.”

Here, the problem is that we know beehives contain

honey, and while they are indeed a source of food, they are

not themselves food but contain it. The program did not know

this, non could it infer it. A second example, with Shank’s

own analysis, makes a similar point:

Henry Ant was thirsty. He walked over to the river bank

where his good friend Bill Bird was sitting. Henry slipped

and fell in the river. He was unable to call for help. He

drowned.

This was not the story that TALE-SPIN set out to tell.

[...] Had TALE-SPIN found a way for Henry to call to Bill

for help, this would have caused Bill to try to save him. But

the program had a rule that said that being in water prevents

speech. Bill was not asked a direct question, and there was no

way for any character to just happen to notice something.

Henry drowned because the program knew that that’s what
happens when a character that can’t swim is immersed in
water (1984, p. 84).

The rules that the program followed, leading to the sad

demise of Henry, are rules that normally apply. People do

not usually talk when they’re swimming. However, in this

case, a second rule should have applied, as we who under-

stand a calling-for-help-while-drowning schema are well

aware of.

The more general issue that arises from these examples

is that people have extensive knowledge of the world that

goes beyond any single set of circumstances that might be

defined in a script. And human intelligence rests on the judi-

cious use of this general knowledge. Thus, on the rare occa-

sion that we do encounter someone singing to their food in a

restaurant, we have knowledge from beyond the immediate

context that lets us conclude the person has had too much to

drink, or is preparing to sing a role at the local opera and is

therefore not really singing to her food at all, or belongs to a

cult for whom praising the food about to be eaten in song is

an accepted ritual. The problem for the AI designer is there-

fore how much of this general knowledge to allow the pro-

gram to have? Too little, and the correct inferences cannot

be made about what has happened when there are even small

deviations from the norm. Too much, and the task of build-

ing a production system that embodies all the possible rea-

sons for something to occur becomes impossibly complex.

It has been claimed that AI has failed (Dreyfus & Dreyfus,

1986) because “intelligent” machines do not have the breadth

of knowledge that permits human reasoning. A current project

called “Cyc” (Guha & Lenat, 1991; Lenat, Guha, Pittman,

Pratt & Shepherd, 1990) has as its goal to imbue a machine

with precisely the breadth of knowledge that humans have.

Over a period of years, programmers will have worked away

at encoding an impressive number of facts about the world.

If this project is successful, it will be testimony to the use-

fulness of general knowledge of the world for problem solv-

ing and will confirm the severe limits of a “schema” or

“script” approach to AI. It may also suggest that the schema

metaphor is misleading. Maybe people do not organize their

knowledge of the world in clearly delineated structures. A

lot of thinking is “fuzzy, ” and the boundaries among sche-

mata are permeable and indistinct.

5.3.7   Mental Models

Another way in which theories of representation have

influenced research in educational technology is through

psychological and human factors research on mental mod-

els. A mental model, like a schema, is a putative structure

that contains knowledge of the world. For some, mental

models and schemata are synonymous. However, there are

two properties of mental models that make them somewhat

different from schemata. Mayer (1992, p. 431) identifies these

as (1) representations of objects in whatever the model de-

scribes and (2) descriptions of how changes in one object
effect changes in another. Roughly speaking, a mental model
is broader in conception than a schema because it specifies
causal actions among objects that take place within it. How-
ever, you will find any number of people who disagree with
this distinction.

The term envisionment is often applied to the representa-

tion of both the objects and the causal relations in a mental

model (DeKleer & Brown, 1981; Strittmatter & Seel, 1989).

This term draws attention to the visual metaphors that often

accompany discussion of mental models. When we use a

mental model, we “see” a representation of it in our “mind’s

eye.” This representation has spatial properties akin to those

we notice with our biological eye. Some objects are “closer

to” some than to others. And from seeing changes in our

mind’s eye in one object occurring simultaneously with

changes in another, we infer causality between them. This is

especially true when we consciously bring about a change in



one object ourselves. For example, Steinberg and Weil (1980)

gave subjects such problems to solve as: “If A is bigger than

B and C is bigger than A, who is the smallest?” Subjects

who changed the representation of the problem by placing

the objects A, B, and C in a line from tallest to shortest were

most successful in solving the problem, because envision-

ing it in this way allowed them simply to “see” the answer.

Likewise, envisioning what happens in an electrical circuit

that includes an electric bell (DeKleer & Brown, 1981) al-

lows someone to come to understand how it works. In short,

a mental model can be “run” like a film or computer pro-

gram and watched in the mind’s eye while it is running. You

may have observed world-class skiers “running” their model

of a slalom course, eyes closed, body leaning into each gate,

before they make their run.

The greatest interest in mental models by educational

technologists lies in ways of getting learners to create good

ones. This implies, as in the case of schema creation, that

instructional materials and events act with what learners al-

ready understand in order to construct a mental model that

the student can use to develop understanding. Just how in-

struction affects mental models has been the subject of con-

siderable research, summarized by Gentner and Stevens

(1983), Mayer (1989a), and Rouse and Morris (1986), among

others. At the end of his review, Mayer lists seven criteria

that instructional materials should meet to induce mental

models that are likely to improve understanding. (Mayer re-

fers to the materials, typically illustrations and text, as “con-

ceptual models” that describe in graphic form the objects

and causal relations among them.) A good model is: Com-

plete—it contains all the objects, states, and actions of the

system; Concise—it contains just enough detail; Coherent—

it makes “intuitive sense”; Concrete—it is presented at an

appropriate level of familiarity; Conceptual—it is potentially

meaningful; Correct—the objects and relations in it corre-

spond to actual objects and events; and Considerate—it uses

appropriate vocabulary and organization.

If these criteria are met, then instruction can lead to the

creation of models that help students understand systems and

solve problems arising from the way the systems work. For

example, Mayer (1 989b) and Mayer and Gallini (1990) have

demonstrated that materials, conforming to these criteria, in

which graphics and text work together to illustrate both the

objects and causal relations in systems (hydraulic drum

brakes, bicycle pumps) were effective at promoting under-

standing. Subjects were able to answer questions requiring

them to draw inferences from their mental models of the

system using information they had not been explicitly taught.

For instance, the answer (not explicitly taught) to the ques-

tion “Why do brakes get hot?” can be found only in an un-

derstanding of the causal relations among the pieces of a

brake system. A correct answer implies that an accurate men-

tal model has been constructed.

A second area of research on mental models in which

educational technologists are now engaging arises from a

belief that interactive multimedia systems are effective tools

for model building (Hueyching & Reeves, 1992; Kozma,

Russell, Jones, Marx & Davis, 1993; Seel & Dorr, 1994).

For the first time, we are able, with reasonable ease, to build

instructional materials that are both interactive and that,

through animation, can represent the changes of state and

causal actions of physical systems. Kozma et al. describe a

computer system that allows students to carry out simulated

chemistry experiments. The graphic component of the sys-

tem (which certainly meets Mayer’s criteria for building a

good model) presents information about changes of state and

causality within a molecular system. It “corresponds to the

molecular-level mental models that chemists have of such

systems” (Kozma et al., 1993, p. 16). Analysis of constructed

student responses and of think-aloud protocols have demon-

strated the effectiveness of this system at helping students

construct good mental models of chemical reactions. Byrne,

Furness, and Winn (1995) describe a virtual environment in

which students learn about atomic and molecular structure

by building atoms from their subatomic components. The

most successful treatment for building mental models was a

highly interactive one.

5.3.8   Mental Representation and the
Development of Expertise

The knowledge we represent as schemata or mental mod-

els changes as we work with it over time. It becomes much

more readily accessible and useable, requiring less conscious

effort to use it effectively. At the same time, its own struc-

ture becomes more robust, and it is increasingly internalized

and automatized. The result is that its application becomes

relatively straightforward and automatic, and frequently oc-

curs without our conscious attention. When we drive home

after work, we do not have to think hard about what to do or

where we are going. It is important in the research that we

shall examine below that this process of “knowledge compi-

lation and translation” (Anderson, 1983) is a slow process.

One of the biggest oversights in our field has occurred when
instructional designers have assumed that task analysis should
describe the behavior of experts rather than novices, com-
pletely ignoring the fact that expertise develops in stages
and that novices cannot simply “get there” in one jump.

Out of the behavioral tradition that continues to domi-

nate a great deal of thinking in educational technology comes

the assumption that it is possible for mastery to result from

instruction. In mastery learning, the only instructional vari-

able is the time required to learn something. Therefore, given

enough time, anyone can learn anything. The evidence that

this is the case is compelling (Bloom, 1984, 1987; Kulik,

1990a, b). However, “enough time” typically comes to mean

the length of a unit, module, or semester, and “mastery”

means mastery of performance, not of high-level skills such

as problem solving.



There is a considerable body of opinion that expertise

arises from a much longer exposure to content in a learning

environment than that implied in the case of mastery learn-

ing. Labouvie-Vief (1990) has suggested that wisdom arises

during adulthood from processes that represent a fourth

“stage” of human development, beyond Piaget’s traditional

three. Achieving a high level of expertise in chess (Chase &

Simon, 1973) or in the professions (Schon, 1983, 1987) takes

many years of learning and applying what one has learned.

This implies that learners move through stages on their way

from novicehood to expertise, and that, as in the case of cog-

nitive development (Piaget & Inhelder, 1969), each stage is

a necessary prerequisite for the next and cannot be skipped.

In this case, expertise does not arise directly from instruc-

tion. It may start with some instruction, but it develops fully

only with maturity and experience on the job (Lave &

Wenger, 1991).

An illustrative account of the stages a person goes through
on the way to expertise is provided by Dreyfus and Dreyfus
(1986). The stages are: novice, advanced beginner, compe-
tence, proficiency, and expertise. Dreyfus and Dreyfus’s ex-
amples are exceptionally useful in clarifying the differences
between stages. The following few paragraphs are therefore
based on their narrative (1986, pp. 21—35).

Novices learn objective and unambiguous facts and rules

about the area that they are beginning to study. These facts

and rules are typically learned out of context. For example,

beginning nurses learn how to take a patient’s blood pres-

sure and are taught rules about what to do if the reading is

normal, high, or very high. However, they do not yet neces-

sarily understand what blood pressure really indicates or why

the actions specified in the rules are necessary or how they

affect the patient’s recovery. In a sense, the knowledge they

acquire is “inert” (Cognition and Technology Group at

Vanderbilt, 1990) in that, though it can be applied, it is ap-

plied blindly and without a context or rationale.

Advanced beginners continue to learn more objective

facts and rules. However, with their increased practical ex-

perience, they also begin to develop a sense of the larger

context in which their developing knowledge and skill oper-

ate. Within that context, they begin to associate the

objective rules and facts they have learned with particu-

lar situations they encounter on the job. Their knowledge

becomes “situational” or “contextualized.” For example, stu-

dent nurses begin to recognize patients’ symptoms by means

that cannot be expressed in objective, context-free rules. The

way a particular patient’s breathing sounds may be suffi-

cient to indicate that a particular action is necessary. How-

ever, the sound itself cannot be described objectively, nor

can recognizing it be learned anywhere except on the job.

As the student moves into competence and develops fur-

ther sensitivity to information in the working environment,

the number of context-free and situational facts and rules

begins to overwhelm the student. The situation can be man-

aged only when the student learns effective decision-mak-

ing strategies. Student nurses at this stage often appear to be

unable to make decisions. They are still keenly aware of the

things they have been taught to look out for and the proce-

dures to follow in the maternity ward. However, they are

also now sensitive to situations in the ward that require them

to change the rules and procedures. They begin to realize

that the baby screaming its head off requires immediate at-

tention even if to give that attention is not something set

down in the rules. They are torn between doing what they

have been taught to do and doing what they sense is more

important at that moment. And often they dither, as Dreyfus

and Dreyfus put it, “. . . like a mule between two bales of

hay” (1986, p. 24).

Proficiency is characterized by quick, effective, and of-

ten unconscious decision making. Unlike the merely com-

petent student, who has to think hand about what to do when

the situation is at variance with objective rules and prescribed

procedures, the proficient student easily grasps what is go-

ing on in any situation and acts, as it were, automatically to

deal with whatever arises. The proficient nurse simply no-

tices that a patient is psychologically ready for surgery, with-

out consciously weighing the evidence.

With expertise comes the complete fusion of decision

making and action. So completely is the expert immersed in

the task, and so complete is the expert’s mastery of the task

and of the situations in which it is necessary to act, that “. . .

When things are proceeding normally, experts don’t solve

problems and don’t make decisions; they do what normally

works” (Dreyfus & Dreyfus, 1986, pp. 30—31). Clearly, such

a state of affairs can arise only after extensive experience on

the job. With such experience comes the expert’s ability to

act quickly and correctly from information without needing

to analyze it into components. Expert radiologists can per-

form accurate diagnoses from X rays by matching the pat-

tern formed by light and dark areas on the film to patterns

they have learned over the years to be symptomatic of par-

ticular conditions. They act on what they see as a whole and

do not attend to each feature separately. Similarly, early re-

search on expertise in chess (Chase & Simon, 1973) revealed

that grand masters rely on the recognition of patterns of pieces

on the chessboard to guide their play and engage in less in-

depth analysis of situations than merely proficient players.

Expert nurses sometimes sense that a patient’s situation has

become critical without there being any objective evidence,
and, although they cannot explain why, they are usually cor-
rect.

A number of things are immediately clean from his ac-

count of the development of expertise. The first is that any

student must start by learning explicitly taught facts and rules

even if the ultimate goal is to become an expert who appar-

ently functions perfectly well without using them at all. Spiro

et al. (1992) claim that learning by allowing students to con-



struct knowledge only works for “advanced knowledge” that

assumes the basics have already been mastered.

Second, though, is the observation that students begin to

learn situational knowledge and skills as early as the “ad-

vanced beginner” stage. This means that the abilities that

appear intuitive, even magical, in experts are already present

in embryonic form at a relatively early stage in a student’s

development. The implication is that instruction should fos-

ter the development of situational, nonobjective knowledge

and skill as early as possible in a student’s education. This

conclusion is corroborated by the study of situated learning

(Brown, Collins & Duguid, 1989) and apprenticeships (Lave

& Wenger, 1991) in which education is situated in real-world

contexts from the start (see also 7.4.4,    20.3).

Third is the observation that as students becomes more

expert, they are less able to rationalize and articulate the rea-

sons for their understanding of a situation and for their solu-

tions to problems. Instructional designers and knowledge

engineers generally are acutely aware of the difficulty of

deriving a systematic and objective description of knowl-

edge and skills from an expert as they go about content or

task analyses. Experts just do things that work and do not

engage in specific on describable problem solving. This also

means that assessment of what students learn as they ac-

quire expertise becomes increasingly difficult and eventu-

ally impossible by traditional means, such as tests. Tacit

knowledge (Polanyi, 1962) is extremely difficult to measure.

Finally, we can observe that what educational technolo-

gists spend most of their time doing—developing explicit

and measurable instruction—is only relevant to the earliest

step in the process of acquiring expertise. There are two im-

plications of this. First, we have, until recently, ignored the

potential of technology to help people learn anything except

objective facts and rules. And these, in the scheme of things

we have just described, though necessary, are intended to be

quickly superseded by other kinds of knowledge and skills

that allow us to work effectively in the world. We might con-

clude that instructional design, as traditionally conceived,

has concentrated on creating nothing more than training

wheels for learning and acting that are to be jettisoned for

more important knowledge and skills as quickly as possible.

The second implication is that by basing instruction on the

knowledge and skills of experts, we have completely ignored

the protracted development that has led up to that state. The

student must go through a number of qualitatively different

stages that come between novicehood and expertise, and can

no more jump directly from stage 1 to stage 5 than a child
can go from Piaget’s preoperational stage of development to
formal operations without passing through the intervening
developmental steps. If we try to teach the skills of the ex-
pert directly to novices, we shall surely fail.

The Dreyfus and Dreyfus account is by no means the

only description of how people become experts. Non is it to

any great extent given in terms of the underlying psycho-

logical processes that enable it to develop, In the next para-

graphs, we look briefly at more specific accounts of how

expertise is acquired, focusing on two cognitive processes:

automaticity and knowledge organization.

5.3.8.1. Automaticity. From all accounts of expertise, it

is clear that experts still do the things they learned to do as

novices, but, more often than not, they do them without think-

ing about them. The automatization of cognitive and motor

skills is a step along the way to expertise that occurs in just

about every explanation of the process. By enabling experts

to function without deliberate attention to what they are do-

ing, automaticity frees up cognitive resources that the expert

can then bring to bean on problems that arise from unex-

pected and hitherto unexperienced events, as well as allow-

ing more attention to be paid to the more mundane though

particular characteristics of the situation. This has been re-

ported to be the case for such diverse skills as learning psy-

chomotor skills (Romiszowski, 1993), developing skill as a

teacher (Leinhart, 1987), typing (Larochelle, 1982), and the

interpretation of X rays (Lesgold et al., 1988).

Automaticity occurs as a result of overlearning (Shiffrin

& Schneider, 1977). Under the mastery learning model

(Bloom, 1984), a student keeps practicing and receiving feed-

back, iteratively, until some predetermined criterion has been

achieved. At that point, the student is taught and practices

the next task. In the case of overlearning, the student contin-

ues to practice after attaining mastery, even if the achieved

criterion is 100% performance. The more students practice

using knowledge and skill beyond just mastery, the more

fluid and automatic their skill will become. This is because

practice leads to discrete pieces of knowledge and discrete

steps in a skill becoming fused into larger pieces, or “chunks.”

Anderson (1983, 1986) speaks of this process as “knowl-

edge compilation” in which declarative knowledge becomes

procedural. Just as a computer compiles statements in a com-

puter language into a code that will actually run, so, Ander-

son claims, the knowledge that we first acquire as explicit

assertions of facts or rules is “compiled” by extended prac-

tice into knowledge and skill that will run on its own with-

out our deliberately having to attend to them. Likewise, Landa

(1983) describes the process whereby knowledge is trans-

formed first into skill and then into ability through practice.

At an early stage of learning something, we constantly have

to refer to statements in order to be able to think and act.

Fluency only comes when we no longer have to refer explic-

itly to what we know. Further practice will turn skills into

abilities that are characterized by being our natural, intuitive

manner of doing things.

5.3.8.2. Knowledge Organization. We mentioned briefly

above that experts appear to solve problems by recognizing

and interpreting the patterns in bodies of information, not by

breaking down the information into its constituent parts. If

automaticity corresponds to the “cognitive process” side of



expertise, then knowledge organization is the equivalent of

“mental representation” of knowledge by experts.

There is considerable evidence that experts organize

knowledge in qualitatively different ways from novices. It

appears that the chunking of information that is characteris-

tic of experts’ knowledge leads them to consider patterns of

information when they are required to solve problems rather

than improving the way they search through what they know

to find an answer. For example, chess masters are fan less

affected by time pressure than lesser players (Calderwood,

Klein & Crandall, 1988). Requiring players to increase the

number of moves they make in a minute will obviously re-

duce the amount of time they have to search through what

they know about the relative success of potential moves.

However, pattern recognition is a much more instantaneous

process and will therefore not be as affected by increasing

the number of moves per minute. Since masters were less

affected than less-expert players by increasing the speed of

a game of chess, it seems that they use pattern recognition

rather than search as their main strategy.

Charness (1989) reported changes in a chess player’s

strategies over a period of 9 years. There was little change in

the player’s skill at searching through potential moves, How-

ever, there were noticeable changes in recall of board posi-

tions, evaluation of the state of the game, and chunking of

information, all of which, Charness claims, are pattern-re-

lated rather than search-related skills. Moreover, Saariluoma

(1990) reported, from protocol analysis, that strong chess

players in fact engaged in less extensive search than inter-

mediate players, concluding that what is searched is more

important than how deeply the search is conducted.

It is important to note that some researchers (Patel &

Groen, 1991) explicitly discount pattern recognition as the

primary means by which some experts solve problems. Also,

in a study of expert X-ray diagnosticians, Lesgold et al. (1988)

propose that experts’ knowledge schemata are developed

through “deeper” generalization and discrimination than

novices’ . It is important to note that in cases where pattern

recognition is not taken to be the key to expert performance,

studies nonetheless supply evidence of qualitative differences

in the nature and use of knowledge between experts and nov-

ices.

5.3.9   Summary

In this section we have seen that theories of mental rep-

resentation have influenced research in educational technol-

ogy in a number of ways. Schema theory, or something very

much like it, is basic to just about all cognitive research on

representation. And schema theory is centrally implicated in

what we call message design. Establishing predictability and

control over what appears in instructional materials and how

the depicted information is represented has been high on the

research agenda. So it has been of prime importance to dis-

cover (a) the nature of mental schemata and (b) how chang-

ing messages affects how schemata change or are created.

Mental representation is also the key to information-map-

ping techniques that have proved to help students understand

and remember what they read. Here, however, the emphasis

is on how the relations among objects and events are en-

coded and stored in memory and less on how the objects and

events are shown. Also, these interconcept relations are of-

ten metaphorical. Within the graphical conventions of infor-

mation maps—hierarchies, radial outlines, and so on—

”above, ” “below, ” “close to, ” and “far from” use the meta-

phor of space to convey semantic, not spatial, structure (see

Winn & Solomon, 1991, for research on these “metaphori-

cal” conventions). Nonetheless, the supposition is that rep-

resenting these relations in some kind of structure in memory

improves comprehension and recall.

The construction of schemata as the basis for computer

reasoning has not been entirely successful. This is largely

because computers are literal minded and cannot draw on

general knowledge of the world outside the scripts they are

programmed to follow. The results of this, for storywriting

at least, are often whimsical and humorous. However, some

would claim that the broader implication is that AI is impos-

sible to attain.

Mental model theory has a lot in common with schema

theory. However, studies of comprehension and transfer of

changes of state and causality in physical systems suggest

that well-developed mental models can be “envisioned” and

“run” as students seek answers to questions. The ability of

multimedia computer systems to show the dynamic interac-

tions of components suggests that this technology has the

potential for helping students develop models that represent

the world in accurate and accessible ways.

The way in which mental representation changes with

the development of expertise has perhaps received less at-

tention from educational technologists than it should. This

is partly because instructional prescriptions and instructional

design procedures (particularly the techniques of task analy-

sis) have not taken into account the stages a novice must go

through on the way to expertise, each of which requires the

development of qualitatively different forms of knowledge.

This is an area to which educational technologists could prof-

itably devote more of their attention.

5.4   MENTAL PROCESSES

The second major body of research in cognitive science

has sought to explain the mental processes that operate on

the representations we construct of our knowledge of the

world. Of course, it is not possible to separate our under-

standing, nor our discussion, of representations and processes.

Indeed, the sections on mental models and expertise made

this abundantly clear! However, a body of research exists



that has tended to focus more on process than representa-

tion. It is to this that we now turn.

All of what follows in this section rests on the assump-

tion that cognitive actions operate on mental representations.

As the cognitive actions occur, mental representations change

in some way. And changes in mental representations mean

changes in our knowledge of the world, which we call learn-

ing. By and large, we can therefore think of three families of

cognitive processes, each bringing about its own kind of

change in mental representation, and therefore resulting in

its own kind of learning. The distinctions, predictably, are

not always clean. But the three kinds of mental processes

have to do with (1) information processing, (2) symbol ma-

nipulation, and (3) knowledge construction. We shall exam-

ine each of these in turn.

5.4.1   Information-Processing Accounts of
Cognition

As we have seen, one of the basic tenets of cognitive

theory is that information that is present in an instructional

stimulus is acted on by a variety of mediating variables be-

fore the student produces a response. Information-process-

ing accounts of cognition describe stages that information

moves through in the cognitive system and suggests pro-

cesses that operate at each step. We therefore begin this sec-

tion with a general account of information processing in hu-

man beings. This account sets the stage for our consider-

ation of cognition as symbol manipulation and as knowl-

edge construction.

Although the rise of information-processing accounts of

cognition cannot be ascribed uniquely to the development

of the computer, the early cognitive psychologists’ descrip-

tions of human thinking use distinctly computerlike terms.

Like computers, people were supposed to take information

from the environment into “buffers, ” to “process” it before

“storing it in memory.” Information-processing models de-

scribe the nature and function of putative “units” within the

human perceptual and cognitive systems, and how they in-

teract. They trace their origins to Atkinson and Shiffrin’s

(1968) model of memory, which was the first to suggest that

memory consisted of a sensory register, a long-term and a

short-term store. According to Atkinson and Shiffrin’s ac-

count, information is registered by the senses and then placed

into a short-term storage area. Here, unless it is worked with

in a “rehearsal buffer, ” it decays after about 15 seconds. If

information in the short-term store is rehearsed to any sig-

nificant extent, it stands a chance of being placed into the

long-term stone, where it remains more or less permanently.

With no more than minor changes, this model of human in-

formation processing has persisted in the instructional tech-

nology literature (R. Gagné, 1974; E. Gagné, 1985) and in

recent ideas about long-term and short-term, or working,

memory (Gagné & Glaser, 1987). The importance that ev-

ery instructional designer gives to practice stems from the

belief that rehearsal improves the chance of information pass-

ing into long-term memory.

A major problem that this approach to explaining human

cognition pointed to was the relative inefficiency of human

beings at information processing. This is to be a result of the

limited capacity of working memory to roughly seven (Miller,

1956) or five (Simon, 1974) pieces of information at one

time. (E. Gagné [1985, p. 13] makes an interesting compari-

son between a computer’s and a person’s capacity to process

information. The computer wins handily. However, human

capacity to be creative, to imagine, and to solve complex

problems does not enter into the equation.) It therefore be-

came necessary to modify the basic model to account for

these observations. One modification arose from studies like

those of Shiffrin and Schneider (1977) and Schneider and

Shiffrin (1977). In a series of memory experiments, these

researchers demonstrated that, with sufficient rehearsal,

people automatize what they have learned so that what was

originally a number of discrete items become one single

“chunk” of information. With what is referred to as “over-

learning, ” the limitations of working memory can be over-

come. The notion of chunking information in order to make

it possible for people to remember collections of more than

five things has become quite prevalent in the information-

processing literature (see Anderson, 1983). And rehearsal

strategies intended to induce chunking became part of the

standard repertoire of tools used by instructional designers.

Another problem with the basic information-processing

account arose from research on memory for text in which it

was demonstrated that people remembered the ideas of pas-

sages rather than the text itself (Bransford & Franks, 1971;

Bransford & Johnson, 1972). This suggested that what was

passed from working memory to long-term memory was not

a direct representation of the information in short-term

memory but a more abstract representation of its meaning.

These abstract representations are, of course, schemata, which

we discussed at some length earlier. Schema theory added a

whole new dimension to ideas about information process-

ing. So fan, information-processing theory assumed that the

driving force of cognition was the information that was reg-

istered by the sensory buffers—that cognition was data

driven, or bottom-up. Schema theory proposed that infor-

mation was, at least in part, top-down. This meant, accord-

ing to Neisser (1976), that cognition is driven as much as by

what we know as by the information we take in at a given

moment. In other words, the contents of long-term memory

play a large part in the processing of information that passes

through working memory. For instructional designers, it be-

came apparent that strategies were required that guided top-

down processing by activating relevant schemata and aided

retrieval by providing the correct context for recall. The

“elaboration theory of instruction” (Reigeluth & Stein, 1983;

Reigeluth & Curtis, 1987) achieves both of these ends (see

18.4.3). Presenting an epitome of the content at the begin-

ning of instruction activates relevant schemata. Providing



synthesizers at strategic points during instruction helps stu-

dents remember, and integrate, what they have learned up to

that point.

Bottom-up, information-processing approaches have re-

cently regained ground in cognitive theory as the result of

the recognition of the importance of preattentive perceptual

processes (Marr, 1982; Arbib & Hanson, 1987; Boden, 1988;
Treisman, 1988; Pomerantz, Pristach & Carlson, 1989). Our
overview of cognitive science, mentioned before, described
computational approaches to cognition. In this return to a
bottom-up approach, however, we can see marked differ-
ences from the bottom-up, information-processing ap-
proaches of the 60s and 70s. Bottom-up processes are now
clearly confined within the barrier of what Pylyshyn (1984)
called cognitive impenetrability. These are processes over which
we can have no attentive, conscious, effortful control. None-
theless, they impose a considerable amount of organization
on the information we receive from the world. In vision, for
example, it is likely that all information about the organiza-
tion of a scene, except for some depth cues, is determined
preattentively (Marr, 1982). What is more, preattentive per-
ceptual structure predisposes us to make particular interpre-
tations of information, top-down (Owens, 1985a, 1985b;
Duong, 1994). In other words, the way our perception pro-
cesses information determines how our cognitive system will
process it. Subliminal advertising works!

Although we still talk rather glibly about short-term and

long-term memory and use rather loosely other terms that

come from information-processing models of cognition, in-

formation-processing theories have matured considerably

since they first appeared in the late 50s. The balance between

bottom-up and top-down theories, achieved largely within

the framework of computational theories of cognition, of-

fers researchers a good conceptual framework within which

to design and conduct studies. Equally, instructional design-

ers who are serious about bringing cognitive theory into edu-

cational technology will find in this latest incarnation of in-

formation-processing theory an empirically valid and ratio-

nally tenable basis for making decisions about instructional

strategies.

5.4.2   Cognition as Symbol Manipulation

How is information that is processed by the cognitive

system represented by it? One very popular answer is as sym-

bols.” This notion lies close to the heart of cognitive science

and, as we saw in the very first section of this chapter, it is

also the source of some of the most virulent attacks on cog-

nitive theory (Clancey, 1993). The idea is that we think by

mentally manipulating symbols that are representations, in

our mind’s eye, of referents in the real world. There is a di-

rect mapping between objects and actions in the external

world and the symbols we use internally to represent them.

Our manipulation of these symbols places them into new

relationships with each other, allowing new insights into

objects and phenomena. Our ability to reverse the process

by means of which the world was originally encoded as sym-

bols therefore allows us to act on the real world in new and

potentially more effective ways.

We need to consider both how well people can manipu-

late symbols mentally and what happens as a result. The

clearest evidence for people’s ability to manipulate symbols

in their “mind’s eye” comes from Kosslyn’s (1985) studies

of mental imagery. Kosslyn’s basic research paradigm was

to have his subjects create a mental image and then to in-

struct them directly to change it in some way, usually by

“zooming” in and out on it. Evidence for the success of his

subjects at doing this was found in their ability to answer

questions about properties of the imaged objects that could

only be inspected as a result of such manipulation.

The work of Shepard and his colleagues (Shepard & Coo-

per, 1982) represents another “classical” case of our ability

to manipulate images in our mind’s eye. The best known of

Shepard’s experimental methods is as follows. Subjects are

shown two three-dimensional solid figures seen from differ-

ent angles. The figures may be the same or different, The

subjects are asked to judge whether the figures are the same

or different. In order to make the judgment, it is necessary to

rotate mentally one of the figures in three dimensions in an

attempt to orient it to the same position as the target, so that

a direct comparison may be made. Shepard consistently found

that the time it took to make the judgment was almost per-

fectly correlated with the number of degrees through which

the figure had to be notated, suggesting that the subject was

rotating it in real time in the mind’s eye.

Finally, Salomon (1979) speaks more generally of “sym-

bol systems” and of people’s ability to internalize them and

use them as “tools for thought.” In an early experiment

(Salomon, 1974), he had subjects study paintings in one of

the following three conditions: (a) A film showed the entire

picture, zoomed in on a detail, and zoomed out again, for a

total of 80 times. (b) The film cut from the whole picture

directly to the detail without the transitional zooming. (c)

The film showed just the whole picture. In a posttest of cue

attendance, in which subjects were asked to write down as

many details as they could from a slide of another picture,

low-ability subjects performed better if they were in the

“zooming” group. High-ability subjects did better if they just

saw the entire picture. Salomon concluded that zooming in

and out on details, which is a symbolic element in the sym-

bol system of film, television, and any form of motion pic-

ture, modeled for the low-ability subjects a strategy for cue

attendance that they could execute for themselves cognitively.

This was not necessary for the high-ability subjects. Indeed,

there was evidence that modeling the zooming strategy re-

duced performance of high-ability subjects because it got in

the way of mental processes that were activated without

prompting. Bovy (1983) found results similar to Salomon’s

using “irising” rather than zooming. A similar interaction



between ability and modeling was reported by Winn (1986)

for serial and parallel pattern-recall tasks.

Salomon has continued to develop the notion of internal-

ized symbol systems serving as cognitive tools. Educational

technologists have been particularly interested in his research

on how the symbolic systems of computers can “become

cognitive, ” as he put it (Salomon, 1988). The internaliza-

tion of the symbolic operations of computers led to the de-

velopment of a word processor, called the “Writing Partner”

(Salomon, Perkins & Globerson, 1991), that helped students
write. The results of a number of experiments showed that
interacting with the computer led the users to internalize a
number of its ways of processing, which led to improved
metacognition relevant to the writing task. Most recently
(Salomon, 1993), this idea has evolved even further, to en-
compass the notion of distributing cognition among students
and machines (and, of course, other students).

This research has had two main influences on educational

technology. The first, derived from work in imagery of the

kind reported by Kosslyn and Shepard, provided an attrac-

tive theoretical basis for the development of instructional

systems that incorporate large amounts of visual material

(Winn, 1980, 1982). The promotion and study of visual lit-

eracy (Dondis, 1973; Sless, 1981) is one manifestation of

this activity. A number of studies have shown that the use of

visual instructional materials can be beneficial for some stu-

dents studying some kinds of content. For example, Dwyer

(1972, 1978) has conducted an extensive research program

on the differential benefits of different kinds of visual mate-

rials, and has generally reported that realistic pictures are

good for identification tasks, line drawings for teaching struc-

ture and function, and so on. Explanations for these differ-

ent effects rest on the assumption that different ways of en-

coding material facilitate some cognitive processes rather

than others—that some materials are more effectively ma-

nipulated in the mind’s eye for given tasks than others.

The second influence of this research on educational tech-

nology has been in the study of the interaction between tech-

nology and cognitive systems. Salomon’s research, which

we just described, is of course an example of this. The work

of Papert and his colleagues at MIT’s Media Lab is another

important example. Papert (1983) began by proposing that

young children can learn the “powerful ideas” that underlie

reasoning and problem solving by working (perhaps playing

is the more appropriate term) in a microworld over which

they have control. The archetype of such a microworld is the

well-known LOGO environment (see 24.5.1.3) in which the

student solves problems by instructing a “turtle” to perform

certain tasks. Learning occurs when the children develop

problem definition and debugging skills as they write pro-

grams for the turtle to follow. Working with LOGO, chil-

dren develop fluency in problem solving as well as specific

skills, like problem decomposition and the ability to

modularize problem solutions. Like Salomon’s (1988) sub-

jects, the children who work with LOGO (and in other tech-

nology-based environments [Harel & Papert, 1991]) inter-

nalize a lot of the computer’s ways of using information and

develop skills in symbol manipulation that they use to solve

problems.

There is, of course, a great deal of research into problem

solving through symbol manipulation that is not concerned

particularly with technology. The work of Simon and his

colleagues is central to this research. (See Klahr & Kotovsky’s

[1989] edited volume that pays tribute to his work.) It is based

largely on the notion that human reasoning operates by ap-
plying rules to encoded information that manipulate the in-
formation in such a way as to reveal solutions to problems.
The information is encoded as a “production system” that
operates by testing whether the conditions of rules are true
or not, and following specific actions if they are (see also
24.8.1). A simple example: “If the sum of an addition of a
column of digits is greater than 10, then write down the right-
hand integer and carry 1 to add to the next column.” The “if
. . . then    structure is a simple production system in which a
mental action is carried out (add 1 to the next column) if a
condition is true (the number is greater than 10).

An excellent illustration is to be found in Larkin and

Simon’s (1987) account of the superiority of diagrams over

text for solving certain classes of problems. Here, they de-

velop a production system model of pulley systems to ex-

plain how the number of pulleys attached to a block, and the

way in which they are connected, affects the amount of weight

that can be raised by a given force. The model is quite com-

plex. It is based on the idea that people need to search through

the information presented to them in order to identify the

conditions of a rule (e.g., if a rope passes over two pulleys

between its point of attachment and a load, its mechanical

advantage is doubled) and then compute the results of ap-

plying the production rule in those given circumstances. The

two steps, searching for the conditions of the production rule

and computing the consequences of its application, draw on

cognitive resources (memory and processing) to different

degrees. Larkin and Simon’s argument is that diagrams re-

quire less effort to search for the conditions and to perform

the computation, which is why they are so often more suc-

cessful than text for problem solving.

It is easier to explain the symbol manipulation required

to search for information and use it to compute the answer to

a question with a simpler example. Winn, Li, and Schill

(1991) conducted an empirical test of some aspects of Larkin

and Simon’s account using family trees rather than pulley

systems. Subjects examined either family trees or statements

about who was related to whom. They were given questions

to answer about kinship, such as, “Is Mary Jack’s second

cousin?” The dependent measure of most interest was the

speed at which subjects were able to answer the questions.

Arguing that the information presented in the text required

more cognitive manipulation than that provided by the fam-



ily trees, from which answers could be obtained by simple

inspection, it was expected that subjects seeing diagrams

would be able to answer kinship questions quicker than those

who saw text. This turned out to be the case.

These results, along with analysis of strategies that sub-

jects used to find answers to the questions, supported the

following interpretation. The text condition provided simple

factual statements about who was whose parent, such as “Jack

is Mary’s parent; Jack is Edward’s parent; Mary is Penny’s

parent    To answer a question from text, such as, “Is Amy

Joseph’s first cousin?”, the subject has to read through the

list until the first relevant piece of information was found,

which in this case would be a statement about who Amy’s

parent was. That information had to be stoned in memory,

while the second piece of information, about Joseph’s par-

ents, was sought and remembered. For first cousins, it was

necessary to repeat this search-and-stone process twice more,

to find who were the parents of Amy’s and Joseph’s parents,

before all the conditions of the production could be satis-

fied. This required encoding and retrieval of at least four

pieces of information, assuming the subject was 100% effi-

cient. Next, the answer had to be computed from this infor-

mation. Either the lineage of Amy and Joseph made them

second cousins or it did not.

In the case of family trees, once the first person in the

problem had been found, all that was necessary to do was to

trace up and down the tree the required number of branches

and read off the name at the end. Nothing had to be stored in

memory, and no computations were required. This, of course,

was only the case when kinship terms (cousin, sibling) and

the conventions of family trees were known to subjects. When

this was not the case, and subjects had to apply kinship rules

explicitly, the advantage of the graphic was reduced. For

example, in one experiment, some subjects worked with

Chinese names and kinship terms defined for them in a rule.

So the requirements of symbol manipulation to solve prob-

lems are removed when the conventions of the graphic rep-

resentation are known. Interestingly, the most rapid responses

were given by subjects, in the graphic condition, who were

told no kinship rules at all. They simply used their knowl-

edge that cousins are always on the same level of a family

tree and did not examine parents at all.

This study, and Larkin and Simon’s production system

model that lay behind it, illustrate very well the symbol ma-

nipulation approach to theories of cognitive processing. In

the case of both pulleys and families, subjects encode ob-

jects (pulleys, ropes, weights, people’s names, and kinship)

as symbols that they are required to store in memory and

manipulate through comparisons, tracing relationships among

them, and so on. When the symbols are represented as dia-

grams of pulley systems or family trees, relationships among

them that are crucial to understanding the systems, and an-

swering questions about them are made explicit by their rela-

tive placement on the page and by drawings of the links

among them: ropes between pairs of pulleys, lines between

names in the family tree. This makes the search for condi-

tions of production rules much simpler and does not draw

on memory at all. Computation consists of reading off the

answer once all the conditions have been met. If, in addi-

tion, the graphic representation uses conventions with which

the reader is familiar, search and computation can be short-

circuited completely, making the task trivial by comparison.

Many other examples of symbol manipulation through

production systems exist. In the area of mathematics educa-

tion, the interested reader will wish to look at projects re-

ported by Resnick (1976) and Greeno (1980) in which in-

struction makes it easier for students to encode and manipu-

late mathematical concepts and relations. Applications of

Anderson’s (1983) ACT* production system in intelligent

computer-based tutors to teach geometry, algebra, and LISP

are also illustrative (Anderson & Reiser, 1985; Anderson,

Boyle & Yost, 1985).

For the educational technologist, the question arises of

how to make symbol manipulation easier so that problems

may be solved more rapidly and accurately. Larkin and Simon

and Winn, Li, and Schill show that one way to do this is to

show conceptual relationships by layout and links in a

graphic. A related body of research concerns the relations

between illustrations and text. (See summaries in Willows

& Houghton, 1987; Houghton & Willows, 1987; Mandl &

Levin, 1989; Schnotz & Kulhavy, 1994.) Central to this re-

search is the idea that pictures and words can work together

to help students understand information more effectively and

efficiently. There is now considerable evidence that people

encode information in one of two memory systems, a verbal

system and an imaginal system. This “dual coding” (Paivio,

1983; Clark & Paivio, 1991) or “conjoint retention” (Kulhavy,

Lee & Caterino, 1985) has two major advantages. The first

is redundancy. Information that is hard to recall from one

source is still available in the other. Second is the unique-

ness of each coding system. As Levin, Anglin, and Carney

(1987) have ably demonstrated, different types of illustra-

tion are particularly good at performing unique functions.

Realistic pictures are good for identification, cutaways and

line drawings for showing the structure or operation of things.

Text is more appropriate for discursive and more abstract

presentations.

Specific guidelines for instructional design have been

drawn from this research, many presented in the summaries

mentioned in the previous paragraph. Other useful sources

are chapters by Mayer and by Winn in Fleming and Levie’s

(1993) volume on message design. The theoretical basis for

these principles is by and large the facilitation of symbol

manipulation in the mind’s eye that comes from certain types

of presentation.

However, as we saw at the beginning of this chapter, the

basic assumption that we think by manipulating symbols that

represent objects and events in the real world has been called



into question (Clancey, 1993). There are a number of grounds

for this criticism. The most compelling is that we do not

carry around in our heads representations that are accurate

“maps” of the world. Schemata, mental models, symbol sys-

tems, search, and computation are all metaphors that give a

superficial appearance of validity because they predict be-

havior. However, the essential processes that underlie the

metaphors are more amenable to genetic and biological than

to psychological analysis. We are, after all, living systems

that have evolved like other living systems. And our minds

are embodied in our brains, which are organs just like any

other. We shall leave the implications of this line of argu-

ment to those writing other chapters in this handbook. For

now, we shall turn to a relatively uncontroversial and well-

rooted corollary, that people construct knowledge for them-

selves rather than receiving it from someone else.

5.4.3   Cognition as Knowledge Construction

One result of the mental manipulation of symbols is that new
concepts can be created. Our combining and recombining of
mentally represented phenomena leads to the creation of new
schemata that may or may not correspond to things in the
real world. When this activity is accompanied by constant
interaction with the environment in order to verify new hy-
potheses about the world, we can say that we are accommo-
dating our knowledge to new experiences in the “classic”
interactions described by Neisser (1976) and Piaget (1968),
mentioned earlier. When we construct new knowledge with-
out direct reference to the outside world, then we are per-
haps at our most creative, conjuring from memories thoughts
and expressions of it that are entirely novel.

When we looked at schema theory, we described Neisser’s
(1976) “perceptual cycle, ” which describes how what we
know directs how we seek information; how we seek infor-
mation determines what information we get; and how the
information we receive affects what we know. This descrip-
tion of knowledge acquisition provides a good account of
how top-down processes, driven by knowledge we already
have, interact with bottom-up processes, driven by informa-
tion in the environment, to enable us to assimilate new knowl-
edge and accommodate what we already know to make it
compatible.

What arises from this description, which we did not make
explicit earlier, is that the perceptual cycle and thus the en-
tire knowledge acquisition process is centered on the person
not the environment. Some (Duffy & Jonassen, 1992;
Cunningham, 1992a; and Chapters 7 and 23 in this hand-
book) extend this notion to mean that the schemata a person
constructs do not correspond in any absolute on objective
way to the environment. A person’s understanding is there-
fore built from that person’s adaptations to the environment
entirely in terms of the experience and understanding that
the person has already constructed. There is no process
whereby representations of the world are directly “mapped”
onto schemata. We do not carry representational images of
the world in our mind’s eye. Semiotic theory, which has re-

cently made an appearance on the educational stage
(Cunningham, 1992b; Driscoll, 1990; Driscoll & Lebow,
1992) goes one step further, claiming that we do not appre-
hend the world directly at all. Rather, we experience it through
the signs we construct to represent it. Nonetheless, if stu-
dents are given responsibility for constructing their own signs
and knowledge of the world, semiotic theory can guide the
development and implementation of learning activities as
Winn, Hoffman, and Osberg (1995) have demonstrated.

A thorough discussion of these ideas takes place in Chap-

ters 7 and 23 and so will therefore not be pursued here. What

is of relevance in this discussion of cognitive processes, how-

ever, is the notion that people do construct understanding

for themselves in ways that are often idiosyncratic and that

often defy expression to someone else. We all “know the

world” in ways that differ, sometimes quite sharply, from

other people. This idiosyncracy of knowledge has led some

(Merrill, 1992) to react severely against instructional theo-

ries that aim at fostering construction of knowledge that var-

ies among individuals on the grounds that some knowledge

and skills must be acquired and expressed in a uniform man-

ner. Idiosyncratic understanding of brain surgery or how to

fly a plane could lead to disaster! However, one can reason-

ably make the case that some knowledge can be, indeed is

best, constructed by individuals for themselves without the

imposition of a right answer or a correct set of actions to

follow as a result.

The significance of knowledge construction for

educational technology lies in its marking a shift away from

didactic, content-specific instruction to building environ-

ments that make it easy for students to construct their under-

standing of knowledge domains. Zucchermaglio (1993) de-

scribes “filled” and “empty” technologies. The former are

instructional systems, like CAI and intelligent tutors, that

consist of shells plus content. For example, Anderson, Boyle,

and Yost’s (1985) algebra tutor consists of a variety of ge-

neric components, found in any intelligent tutorial, such as

the capability of constructing a student model, of making

inferences, and so on (see chapters in Polson & Richardson,

1988). In addition, it contains a knowledge base about alge-

bra from which the other components draw. On the other

hand, empty technologies are shells that provide teachers

and students with the capability of interacting with content,

exploring information, and creating output, but which do not

contain a predetermined knowledge base. An example is the

“Bubble Dialogue” project (McMahon & O’Neil, 1993),

which consists of a HyperCard stack that permits students to

construct dialogues. The program allows students to write

both the overt speech and the covert thoughts of the charac-

ters whose roles they play. Yet what the students write about

is not prescribed, and the tool has been used for many pur-

poses ranging from teaching writing to developing under-

standing about social problems.

If cognition is understood to involve the construction of

knowledge by students, it is therefore essential that they be



given the freedom to do so. This means that, within Spiro et

al.’s (1992) constraints of “advanced knowledge acquisition

in ill-structured domains, ” instruction is less concerned with

content, and sometimes only marginally so. Instead, educa-

tional technologists need to become more concerned with

how students interact with the environments within which

technology places them and with how objects and phenom-

ena in those environments appear and behave. This requires

educational technologists to read carefully in the area of hu-

man factors (for example, Ellis, 1993; Barfield & Furness,

1995) where a great deal of research exists on the cognitive

consequences of human-machine interaction. It requires less

emphasis on instructional design’s traditional attention to task
and content analysis. It requires alternative ways of thinking
about (Winn, 1993b) and doing (Cunningham, 1992a) evalu-
ation. In short, it is only through the cognitive activity that
interaction with content engenders, not the content itself, that
people can learn anything at all.

5.4.4   Summary

Information-processing models of cognition have had a

great deal of influence on research and practice of educa-

tional technology. Instructional designers’ day-to-day frames

of reference for thinking about cognition, such as working

memory and long-term memory, come directly from infor-

mation-processing theory. The emphasis on rehearsal in many

instructional strategies arises from the small capacity of

working memory. Attempts to overcome for this problem

have led designers to develop all manner of strategies to in-

duce chunking. Information-processing theories of cognition

continue to serve our field well.

Research into cognitive processes involved in symbol

manipulation have been influential in the development of

intelligent tutoring systems (Wenger, 1987), as well as in

information-processing accounts of learning and instruction.

The result has been that the conceptual bases for some

(though not all) instructional theory and instructional design

models have embodied a production system approach to in-

struction and instructional design (see Landa, 1983; Scandura,

1983; Merrill, 1992). To the extent that symbol manipula-

tion accounts of cognition are being challenged, these ap-

proaches to instruction and instructional design are also chal-

lenged by association.

Accounts of learning through the construction of knowl-

edge by students have been generally well accepted since

the mid-70s and have served as the basis for a number of the

assumptions educational technologists have made about how

to teach. Attempts to set instructional design firmly on cog-

nitive foundations (DiVesta & Rieber, 1987; Bonner, 1988;

Tennyson & Rasch, 1988) reflect this orientation. We exam-

ine these in the next section.

5.5   COGNITIVE THEORY AND
EDUCATIONAL TECHNOLOGY

Educational technology has for some time been influ-

enced by developments in cognitive psychology. Up until

now, we have focused mainly on research that has fallen

outside the traditional bounds of our field. We have referred

to sources in philosophy, psychology, computer science, and

so on. In this section, we review the work of those who bean

the title “educational technologist” who have been primarily

responsible for bringing cognitive theory to our field. We

are, again, of necessity selective, focusing on the applied

side of our field, instructional design. We begin with some

observations about what scholars consider design to be. We

then examine the assumptions that underlay behavioral theory

and practice at the time when instructional design became

established as a discipline. We then argue that research in
our field has helped the theory that designers use to make
decisions about how to instruct keep up with developments
in cognitive theory. However, design procedures have not
evolved as they should have. We conclude with some impli-
cations about where design should go.

5.5.1   Theory, Practice, and Instructional Design
At the beginning of this chapter we noted that the disci-

pline of educational technology hit its stride during the hey-

day of behaviorism. This historical fact was entirely fortu-

itous. Indeed, our field could have started equally well un-

der the influence of Gestalt or of cognitive theory. However,

the consequences of this coincidence have been profound

and to some extent troublesome for our field. To explain why,

we need to examine the nature of the relationship between

theory and practice in our field. (Our argument is equally

applicable to any discipline.)

The purpose of any applied field, such as educational

technology, is to improve practice. The way in which theory

guides that practice is through what Simon (1981) and Glaser

(1976) call design. The purpose of design, seen this way, is

to select the alternative from among several courses of ac-

tion that will lead to the best results. Since these results may

not be optimal, but the best one can expect given the state of

our knowledge at any particular time, design works through

a process Simon (1981) calls satisficing.

The degree of success of our activity as instructional de-

signers relies on two things: first, the validity of our knowl-

edge of effective instruction in a given subject domain and,

second, the reliability of our procedures for applying that

knowledge. Here is an example. We are given the task of

writing a computer program that teaches the formation of

regular English verbs in the past tense. To simplify matters,

let us assume that we know the subject matter perfectly. As

subject-matter specialists, we know a procedure for accom-

plishing the task: Add ed to the infinitive, and double the

final consonant if it is immediately preceded by a vowel.

Would our instructional strategy therefore be to do nothing

more than show a sentence on the computer screen that says,

“Add ed to the infinitive, and double the final consonant if it

is immediately preceded by a vowel”? Probably not (though



such a strategy might be all that is needed for students who

already understand the meanings of infinitive, vowel, and con-

sonant). If we know something about instruction, we will

probably consider a number of other strategies as well. Maybe

the students would need to see examples of correct and in-

correct verb forms. Maybe they would need to practice form-

ing the past tense of a number of verbs. Maybe they would

need to know how well they were doing. Maybe they would

need a mechanism that explained and corrected their errors.

The act of designing our instructional computer program in

fact requires us to choose from among these and other strat-

egies the ones that are most likely to “satisfice” the require-
ment of constructing the past tense of regular verbs.

Knowing subject matter and something about instruction

are therefore not enough. We need to know how to choose

among alternative instructional strategies. Reigeluth (1983)

has pointed the way. He observes that the instructional theory

that guides instructional designers’ choices is made up of

statements about relations among the conditions, methods,

and outcomes of instruction. When we apply prescriptive

theory, knowing instructional conditions and outcomes leads

to the selection of an appropriate method. For example, an

instructional prescription might consist of the statement, “To

teach how to form the past tense of regular English verbs

(outcome) to advanced students of English who are familiar

with all relevant grammatical terms and concepts (condi-

tions), present them with a written description of the proce-

dure to follow (method).” All the designer needs to do is

learn a large number of these prescriptions and all is well.

There are a number of difficulties with this example, how-

ever. First, instructional prescriptions rarely, if at all, consist

of statements at the level of specificity as the previous one

about English verbs. Any theory gains power by its general-

ity. This means that instructional theory contains statements

that have a more general applicability, such as “to teach a

procedure to a student with a high level of entering knowl-

edge, describe the procedure.” Knowing only a prescription

at this level of generality, the designer of the verb program

needs to determine whether the outcome of instruction is

indeed a procedure—it could be a concept, or a rule, on re-

quire problem solving—and whether or not the students have

a high level of knowledge when they start the program.

A second difficulty arises if the designer is not a subject-

matter specialist, which is often the case faced by designers.

In our example, this means that the designer has to find out

that “forming the past tense of English verbs” requires add-

ing ed and doubling the consonant.

Finally, the prescription itself might not be valid. Any

instructional prescription that is derived empirically, from

an experiment or from observation and experience, is always

a generalization from a limited set of cases. It could be that

the present case is an exception to the general rule. The de-

signer needs to establish whether or not this is so.

These three difficulties point to the requirement that in-
structional designers know how to perform analyses that lead
to the level of specificity required by the instructional task.
We all know what these are. Task analysis permits the in-
structional designer to identify exactly what the student must
achieve in order to attain the instructional outcome. Learner
analysis allows the designer to determine the most critical of
the conditions under which instruction is to take place. And
the classification of tasks, described by task analysis, as facts,
concepts, rules, procedures, problem solving, and so on links
the designer’s particular case to more general prescriptive
theory. Finally, if the particular case the designer is working
on is an exception to the general prescription, the designer
will have to experiment with a variety of potentially effec-
tive strategies in order to find the best one, in effect invent-
ing a new instructional prescription along the way.

Even from this simple example, it is clear that, in order
to be able to select the best instructional strategies, the in-
structional designer needs to know both instructional theory
and how to do task and learner analysis, to classify learning
outcomes into some theoretically sound taxonomy, and to
reason about instruction in the absence of prescriptive prin-
ciples. Our field, then, like any applied field, provides to its
practitioners both theory and procedures through which to
apply the theory. These procedures are predominantly, though
not exclusively, analytical.

Embedded in any theory are sets of assumptions that are
amenable to empirical verification. If the assumptions are
shown to be false, then the theory must be modified or aban-
doned as a paradigm shift takes place (Kuhn, 1970). The
effects of these basic assumptions are clearest in the physi-
cal sciences. For example, the assumption in modern phys-
ics that it is impossible for the speed of objects to exceed
that of light is so basic that, if it were to be disproved, the
entire edifice of physics would come tumbling down. What
is equally important is that the procedures for applying theory
rest on the same set of assumptions. The design of every-
thing from cyclotrons to radio telescopes relies on the invio-
lability of the “light barrier.”

It would seem reasonable, therefore, that both the theory

and procedures of instruction should nest on the same set of

assumptions and, further, that should the assumptions of in-

structional theory be shown to be invalid, the procedures of

instructional design should be revised to accommodate the

paradigm shift. In the next section, we show that this was

the case when instructional design established itself within

our field within the behavioral paradigm. However, we do

not believe that this is the case today.

5.5.2   The Legacy of Behaviorism

The most fundamental principle of behavioral theory is

that there is a predictable and reliable link between a stimu-

lus and the response it produces in a student. Behavioral in-

structional theory therefore consists of prescriptions for what

stimuli to employ if a particular response is intended (see

2.2.1.3). The instructional designer can be reasonably cer-

tain that with the right sets of instructional stimuli all man-



ner of learning outcomes can be attained. Indeed, behavioral

theories of instruction can be quite intricate (Gropper, 1983)

and can account for the acquisition of quite complex behav-

iors. This means that a basic assumption of behavioral theo-

ries of instruction is that human behavior is predictable. The

designer assumes that if an instructional strategy, made up

of stimuli, has had a certain effect in the past, it will prob-

ably do so again.

The assumption that behavior is predictable also under-

lies the procedures that instructional designers originally

developed to implement behavioral theories of instruction

(Andrews & Goodson, 1981; Gagné, Briggs & Wager 1988;

Gagné & Dick, 1983). If behavior is predictable, then all the

designer needs to do is to identify the subskills the student

must master that, in aggregate, permit the intended behavior

to be learned, and select the stimulus and strategy for its

presentation that builds each subskill. In other words, task

analysis, strategy selection, try-out, and revision also nest

on the assumption that behavior is predictable. The proce-

dural counterpart of behavioral instructional theory is there-

fore analytical and empirical, that is, reductionist. If behav-

ior is predictable, then the designer can select the most ef-

fective instructional stimuli simply by following the proce-

dures described in an instructional design model. Instruc-

tional failure is ascribed to the lack of sufficient informa-

tion, which can be corrected by doing more analysis and for-

mative testing.

5.5.3   Cognitive Theory and the Predictability of
Behavior

The main theme of this chapter has been cognitive theory.

We have argued that cognitive theory provides a much more

complete account of human learning and behavior because

it considers factors that mediate between the stimulus and

the response, such as mental processes and the internal rep-

resentations that they create. We have documented the as-

cendancy of cognitive theory and its replacement of behav-

ioral theory as the dominant paradigm in educational psy-

chology and technology. However, the change from behav-

ioral to cognitive theories of learning and instruction has not

been accompanied by a parallel change in the procedures of

instructional design through which the theory is implemented.

You might well ask why a change in theory should be

accompanied by a change in procedures for its application.

The reason is that cognitive theory has essentially invali-

dated the basic assumption of behavioral theory, that behav-

ior is predictable. Since the same assumption underlies the

analytical, empirical, and reductionist technology of instruc-

tional design, the validity of instructional design procedures

is inevitably called into question.

Cognitive theory’s challenges to the predictability of be-

havior are numerous and have been described in detail else-

where (Winn, 1987, 1990, 1993). The main points may be

summarized as follows:

1.   Instructional theory is incomplete. This point is trivial

at first glance. However, it reminds us that there is not a

prescription for every possible combination of instructional

conditions, methods, and outcomes. In fact, instructional

designers frequently have to select strategies without

guidance from instructional theory. This means that there are

often times when there are no prescriptions with which to

predict student behavior.

2.   Mediating cognitive variables differ in their nature

and effect from individual to individual. There is a good

chance that everyone s response to the same stimulus will be

different because everyone’s experiences, in relation to which

the stimulus will be processed, are different. The role of

individual differences in learning and their relevance to the

selection of instructional strategies has been a prominent

theme in cognitive theory for 2 decades (Cronbach & Snow,

1977; Snow, 1992). Individual differences make it extremely

difficult to predict learning outcomes for two reasons. First,

to choose effective strategies for students, it would be

necessary to know far more about the student than is easily

discovered. The designer would need to know the student’s

aptitude for learning the given knowledge or skills, the

student’s prior knowledge, motivation, beliefs about the

likelihood of success, learning style, level of anxiety, and

stage of intellectual development. Such a prospect would

prove daunting even to the most committed determinist!

Second, for prescriptive theory, it would be necessary to

construct an instructional prescription for every possible

permutation of, say, high, low, and average levels on every

factor that determines an individual difference. This

obviously would render instructional theory too complex to

be useful for the designer. In both the case of the individual

student and of theory, the interactions among many factors

make it impossible in practice to predict what the outcomes

of instruction will be. One way around this problem has been

to let students decide strategies for themselves. Learner

control (Merrill, 1988; Tennyson & Park, 1987) is a feature

of many effective computer-based instructional programs

(see 33.1). However, this does not attenuate the damage to

the assumption of predictability. If learners choose their

course through a program, it is not possible to predict the

outcome.

3.   Some students know how they learn best and will not

necessarily use the strategy the designer selected for them.

Metacognition is another important theme in cognitive

theory. It is generally considered to consist of two comple-

mentary processes (Brown, Campione & Day, 1981). The

first is students’ ability to monitor their own progress as they

learn. The second is to change strategies if they realize they

are not doing well. If students do not use the strategies that

instructional theory suggests are optimal for them, then it

becomes impossible to predict what their behavior will be.

Instructional designers are now proposing that we develop

ways to take instructional metacognition into account as we

do instructional design (Lowyck & Elen, 1994).

4.   People do not think rationally as instructional

designers would like them to. Many years ago, Collins

(1978) observed that people reason “plausibly.” By this he

meant that they make decisions and take actions on the basis

of incomplete information, hunches, and intuition. Hunt



(1982) has gone so far as to claim that plausible reasoning is

necessary for the evolution of thinking in our species. If we

were creatures who made decisions only when all the

information needed for a logical choice was available, we

would never make any decisions at all and would not have

developed the degree of intelligence that we have! Schon’s

(1983, 1987) study of decision making in the professions

comes to a conclusion that is similar to Collins’s. More

recently, research in situated learning (Brown, Collins &

Duguid, 1989; Lave & Wenger, 1991; Suchman, 1987) has

demonstrated that most everyday cognition is not “planful”

and is most likely to depend on what is afforded by the

particular situation in which it takes place. The situated

nature of cognition has led Streibel (1991) to claim that

standard cognitive theory can never act as the foundational

theory for instructional design. Be that as it may, if people do

not reason logically, and if the way they reason depends on

specific and usually unknowable contexts, their behavior is

certainly unpredictable.

These and other arguments (see Csiko, 1989) are suc-

cessful in their challenge to the assumption that behavior is

predictable. The bulk of this chapter has described the fac-

tors that come between a stimulus and a student’s response

that make the latter unpredictable. Scholars working in our

field have for the most part shifted to a cognitive orientation

when it comes to theory. However, they have not shifted to a

new position on the procedures of instructional design. Since

these procedures are based, like behavioral theory, on the

assumption that behavior is predictable, and since the as-

sumption is no longer valid, the procedures whereby educa-

tional technologists apply their theory to practical problems

are without foundation.

5.5.4   Cognitive Theory and Educational
Technology

The evidence that educational technologists have ac-

cepted cognitive theory is prominent in the literature of our

field (Gagné & Glaser, 1987; Richey, 1986; Spencer, 1988;

Winn, 1989a). Of particular relevance to this discussion are

those who have directly addressed the implications of cog-

nitive theory for instructional design (Bonner, 1988; Cham-

pagne, Klopfer & Gunstone, 1982; DiVesta & Rieber, 1987;

Schott, 1992; Tennyson & Rasch, 1988). Collectively, schol-

ars in our field have described cognitive equivalents for all

stages in instructional design procedures. Here are some ex-

amples.

Twenty years ago, Resnick (1976) described “cognitive

task analysis” for mathematics. Unlike behavioral task analy-

sis, which produces task hierarchies or sequences (Gagné,

Briggs & Wager, 1988), cognitive analysis produces either

descriptions of knowledge schemata that students are ex-

pected to construct, or descriptions of the steps information

must go through as the student processes it, or both. Greeno’s

(1976, 1980) analysis of mathematical tasks illustrates the

knowledge representation approach and corresponds in large

part to instructional designers’ use of information mapping

that we discussed in section 5.3. Resnick’s (1976) analysis

of the way children perform subtraction exemplifies the in-

formation-processing approach.

Cognitive task analysis gives rise to cognitive objectives,

counterparts to behavioral objectives. In Greeno’s (1976)

case, these appear as diagrammatic representations of sche-

mata, not written statements of what students are expected

to be able to do, to what criterion, and under what conditions

(Mager, 1962).

The cognitive approach to learner analysis aims to pro-

vide descriptions of students’ mental models (Bonner, 1988),

not descriptions of their levels of performance prior to in-

struction. Indeed, the whole idea of “student model” that is

so important in intelligent computer-based tutoring (Van

Lehn, 1988) very often revolves around ways of capturing

the ways students represent information in memory and how

that information changes, not on their ability to perform tasks.

With an emphasis on knowledge schemata and the

premise that learning takes place as schemata change,

cognitively oriented instructional strategies are selected on

the basis of their likely ability to modify schemata rather

than to shape behavior. If schemata change, DiVesta and

Rieber (1987) claim, students can come truly to understand

what they are learning, not simply modify their behavior.

These examples show that educational technologists con-

cerned with the application of theory to instruction have care-

fully thought through the implications of the shift to cogni-

tive theory for instructional design. Yet in almost all instances,

no one has questioned the procedures that we follow. We do

cognitive task analysis, describe students’ schemata and

mental models, write cognitive objectives, and prescribe

cognitive instructional strategies. But the fact that we do task

and learner analysis, write objectives, and prescribe strate-

gies has not changed. The performance of these procedures

still assumes that behavior is predictable, a cognitive ap-

proach to instructional theory notwithstanding. Clearly some-

thing is amiss.

5.5.5   Can Instructional Design Remain an
Independent Activity?

We are at the point where our acceptance of the assump-

tions of cognitive theory forces us to rethink the procedures

we use to apply it through instructional design. The key to

what is necessary lies in a second assumption that follows

from the assumption of the predictability of behavior. That

assumption is that the design of instruction is an activity that

can proceed independent of the implementation of instruc-

tion. If behavior is predictable and if instructional theory con-

tains valid prescriptions, then it should be possible to per-

form analysis, select strategies, try them out, and revise them

until a predetermined standard is reached, and then deliver

the instructional package to those who will use it, with the

safe expectation that it will work as intended. If, as we have



demonstrated, that assumption is not tenable, we must also

question the independence of design from the implementa-

tion of instruction (Winn, 1990).

There are a number of indications that educational tech-

nologists are thinking along these lines. All conform loosely

with the idea that decision making about learning strategies

must occur during instruction rather than ahead of time. In

their details, these points of view range from the philosophi-

cal argument that thought and action cannot be separated,

and therefore the conceptualization and doing of instruction

must occur simultaneously (Nunan, 1983; Schon, 1987), to

more practical considerations of how to construct learning

environments that are adaptive, in real time, to student ac-

tions (Merrill, 1992). Another way of looking at this is to

argue that, if learning is indeed situated in a context (for ar-

guments on this issue, see McLellan, 1996), then instruc-

tional design must be situated in that context, too.

A key concept in this approach is the difference between

learning environments and instructional programs. Other

chapters in this volume address the matter of media research.

Suffice it to say here that the most significant development

in our field that occurred between Clark’s (1983) argument

that media do not make a difference to what and how stu-

dents learn and Kozma’s (1991) revision of this argument

was the development of software that could create rich mul-

timedia environments. Kozma (1994) makes the point that

interactive and adaptive environments can be used by stu-

dents to help them think, an idea that has a loot in common

with Salomon’s (1979) notion of media as “tools for thought.”

The kind of instructional program that drew much of Clank’s

(1985) disapproval was didactic— designed to do what teach-

ers do when they teach towards a predefined goal. What in-

teractive multimedia systems do is allow students a great

deal of freedom to learn in their own way rather than in the

way the designer prescribes. Zucchermaglio (1993) refers to

them as “empty technologies” that, like shells, can be filled

with anything the student on teacher wishes. By contrast,

“full technologies” comprise programs whose content and

strategy are predetermined, as is the case with computer-

based instruction (see 12.2.3).

We believe that the implementation of cognitive princi-

ples in the procedures of educational technology requires a

reintegration of the design and execution of instruction. This

is best achieved when we develop stimulating learning envi-

ronments whose function is not entirely prescribed but which

can adapt in real time to student needs and proclivities. This

does not necessarily require that the environments be “intel-

ligent” (although at one time that seemed to be an attractive

proposition [Winn, 1987]). It requires, rather, that the sys-

tem be responsive to the student’s intelligence in such a way

that the best ways for the student to learn are determined, as

it were, “on the fly.”

5.5.6   The Three “Ages” of Scholarship in

Educational Technology

We summarize the main points in this section by describ-

ing the three ages of educational technology. We call these

the age of instructional design, the age of message design,

and the age of environment design.

The age of instructional design is dominated by behav-

ioral theories of learning and instruction and by procedures

for applying theory to practice that are based ultimately on

the assumption that behavior is predictable. The decisions

instructional designers make are driven almost exclusively

by the nature of the content students are to master. Thus,

task analysis, which directs itself to an analysis of content

dominates the sources of information from which strategy

selection is made. The most important criterion for the suc-

cess of the techniques used during the age of instructional

design is whether on not they produce instruction that is as

successful as a teacher. Clank’s (1983) criticism of research

in our field is leveled at instructional systems that attempt to

meet this criterion.

In the age of message design, the emphasis shifts from

instructional content to instructional formats. We believe that

this is the immediate result of the concern among cognitive

theorists with the way information is represented in memory,

schemata, and mental models. There is an assumption (doubt-

less incorrect; see Salomon, 1979) that the format selected

to present information to students in some way determines

the way in which the information is encoded in memory. A

less-restrictive form of this assumption has, however, pro-

duced a great deal of useful research about the relationship

between message forms and cognition. Fleming and Levie

(1993) provide an excellent summary of this work.

The age of environment design is likewise based on cog-

nitive theory. However, its emphasis is on providing infor-

mation from which students can construct understanding for

themselves through interaction that is more or less con-

strained, depending on students’ needs and wishes. The key

to success in this third, current, age is in the interaction be-

tween student and environment rather than in content or in-

formation format. A good example of this orientation in in-

structional design is Merrill’s (1992) transaction theory,

where the instructional designer’s main focus in prescribing

instruction is the kind of transaction (interaction) that oc-

curs between the student and the instructional program. An-

other example is the design of learning environments based

in the technologies of virtual reality (Winn, 1993). In virtual

environments, the interaction with the environment is po-

tentially so intuitive as to be entirely transparent to the user

(Bricken, 1991). However, just what the participant in a vir-

tual environment is empowered to do and particularly the

way in which the environment reacts to participant actions

(Winn & Bricken, 1992) requires the utmost care and atten-

tion from the instructional designer.

5.5.7   Section Summary



In this section we have reviewed a number of important

issues concerning the importance of cognitive theory to what

educational technologists actually do, namely, design instruc-

tion. This has led us to consider the relations between theory

and the procedures employed to apply it in practical ways.

We observed that when behaviorism was the dominant para-

digm in our field, both the theory and the procedures for its

application adhered to the same basic assumption, namely,

that human behavior is predictable. We then noted that our

field was effective in subscribing to the tenets of cognitive

theory, but that the procedures for applying that theory re-

mained unchanged and continued to subscribe to the by-now

discredited assumption that behavior is predictable. We con-

cluded by suggesting that cognitive theory requires of our

design procedures that we create learning environments in

which learning strategies are not entirely predetermined,

which requires that the environments be highly adaptive to

student actions. Recent technologies that permit the devel-

opment of virtual environments offer the best possibility for

realizing this kind of learning environment.
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